多因素协同的大型活动场馆周边路段速度预测

U491.1; 大型活动会引起举办场馆周边区域路网出现交通流短时骤增与消散,导致周边区域路网交通运行呈现偶发性与不确定性波动,而现有预测方法通常难以捕捉特殊事件下交通流受多维因素复杂影响及其演变机理.为充分挖掘路段速度的时间序列和影响因素特征,揭示速度预测中不同影响特征间的耦合作用机理,提出了一种结合可解释机器学习与长短时记忆网络的速度预测模型(MC-LSTM).结合大型活动的特点构建影响因素集,采用XGBoost算法评价活动规模、性质等因素特征对场馆周边路段速度的影响相对重要度,量化多元因素对场馆周边路网运行状态的协同效用,融合LSTM网络,考虑交通状态的时间依赖关系,捕获不同历史时期的时间...

Full description

Saved in:
Bibliographic Details
Published in华南理工大学学报(自然科学版) Vol. 52; no. 8; pp. 34 - 44
Main Authors 翁剑成, 吴明珠, 魏瑞聪, 王晶晶, 毛力增
Format Journal Article
LanguageChinese
Published 综合交通运行监测与服务北京市重点实验室,北京 100161 01.08.2024
北京工业大学 交通工程北京市重点实验室,北京 100124%福建省高速公路联网运营有限公司,福建 福州 350001%北京市交通运行监测调度中心,北京 100161
Subjects
Online AccessGet full text
ISSN1000-565X
DOI10.12141/j.issn.1000-565X.230386

Cover

Loading…
Abstract U491.1; 大型活动会引起举办场馆周边区域路网出现交通流短时骤增与消散,导致周边区域路网交通运行呈现偶发性与不确定性波动,而现有预测方法通常难以捕捉特殊事件下交通流受多维因素复杂影响及其演变机理.为充分挖掘路段速度的时间序列和影响因素特征,揭示速度预测中不同影响特征间的耦合作用机理,提出了一种结合可解释机器学习与长短时记忆网络的速度预测模型(MC-LSTM).结合大型活动的特点构建影响因素集,采用XGBoost算法评价活动规模、性质等因素特征对场馆周边路段速度的影响相对重要度,量化多元因素对场馆周边路网运行状态的协同效用,融合LSTM网络,考虑交通状态的时间依赖关系,捕获不同历史时期的时间相关性,实现对活动期间场馆周边路段速度的精确预测.以北京市连续6个月的大型活动期间周边路网为例进行模型验证,结果表明:所构建的MC-LSTM模型的预测精度可达94.5%以上,优于考虑多因素协同的XGBoost模型、只考虑单因素特征的LSTM模型及未考虑外部特征的LSTM模型,证明该研究所提出的模型有效性与稳定性更优,可为大型活动场馆周边路网交通组织优化和制定针对性交通管控与保障措施提供定量化的决策依据.
AbstractList U491.1; 大型活动会引起举办场馆周边区域路网出现交通流短时骤增与消散,导致周边区域路网交通运行呈现偶发性与不确定性波动,而现有预测方法通常难以捕捉特殊事件下交通流受多维因素复杂影响及其演变机理.为充分挖掘路段速度的时间序列和影响因素特征,揭示速度预测中不同影响特征间的耦合作用机理,提出了一种结合可解释机器学习与长短时记忆网络的速度预测模型(MC-LSTM).结合大型活动的特点构建影响因素集,采用XGBoost算法评价活动规模、性质等因素特征对场馆周边路段速度的影响相对重要度,量化多元因素对场馆周边路网运行状态的协同效用,融合LSTM网络,考虑交通状态的时间依赖关系,捕获不同历史时期的时间相关性,实现对活动期间场馆周边路段速度的精确预测.以北京市连续6个月的大型活动期间周边路网为例进行模型验证,结果表明:所构建的MC-LSTM模型的预测精度可达94.5%以上,优于考虑多因素协同的XGBoost模型、只考虑单因素特征的LSTM模型及未考虑外部特征的LSTM模型,证明该研究所提出的模型有效性与稳定性更优,可为大型活动场馆周边路网交通组织优化和制定针对性交通管控与保障措施提供定量化的决策依据.
Abstract_FL Large scale activities can cause a sudden increase and dissipation of traffic flow in the area around the venue,resulting in occasional and uncertain fluctuations of the road network operation in the surrounding area.The existing methods are insufficient to capture the evolution mechanism of traffic flow under the influence of multi-dimensional factors in special events at the prediction scale.In order to fully exploit the information of time series and influencing factor features of road section speed and effectively deal with the coupling mechanism between dif-ferent influencing features in speed prediction,this paper proposed a speed prediction model(MC-LSTM)combin-ing Interpretable Machine Learning and Long Short-Term Memory network.Firstly,the study combined the charac-teristics of large scale activities to construct the set of influencing factors.Then it used the XGBoost algorithm to evaluate the relative importance of the impact of activity scale,nature and other factors characteristics on the speed of road sections around the venue.It quantified the synergistic utility of multiple factors on the operation state of the road network around the venue,fused LSTM networks,considered the time-dependent relationship of traffic state,captureed the temporal correlation of different historical periods,and accurately predicted the speed of road sections around the venue during the activity.MC-LSTM was validated by taking the road network around large scale activities venues in Beijing for six consecutive months.The results indicate that the prediction accuracy of the MC-LSTM model can reach more than 94.5%,which is better than that of XGBoost model considering multiple fac-tors synergism,LSTM model considering only single factor features and the LSTM model not considering external features.It proved that the model proposed in this paper has better validity and stability.This study can provide a decision basis for optimizing the traffic organization of the road network around the large scale activities venues and formulating traffic control and security measures.
Author 毛力增
翁剑成
王晶晶
吴明珠
魏瑞聪
AuthorAffiliation 北京工业大学 交通工程北京市重点实验室,北京 100124%福建省高速公路联网运营有限公司,福建 福州 350001%北京市交通运行监测调度中心,北京 100161;综合交通运行监测与服务北京市重点实验室,北京 100161
AuthorAffiliation_xml – name: 北京工业大学 交通工程北京市重点实验室,北京 100124%福建省高速公路联网运营有限公司,福建 福州 350001%北京市交通运行监测调度中心,北京 100161;综合交通运行监测与服务北京市重点实验室,北京 100161
Author_FL WENG Jiancheng
WANG Jingjing
MAO Lizeng
WU Mingzhu
WEI Ruicong
Author_FL_xml – sequence: 1
  fullname: WENG Jiancheng
– sequence: 2
  fullname: WU Mingzhu
– sequence: 3
  fullname: WEI Ruicong
– sequence: 4
  fullname: WANG Jingjing
– sequence: 5
  fullname: MAO Lizeng
Author_xml – sequence: 1
  fullname: 翁剑成
– sequence: 2
  fullname: 吴明珠
– sequence: 3
  fullname: 魏瑞聪
– sequence: 4
  fullname: 王晶晶
– sequence: 5
  fullname: 毛力增
BookMark eNo9jU9LAkEcQOdgkJnfoWuH3X7zZ2dnoUtI_0DoUtBNZnZnTZERGiKPHaRDFtbVoiTEPNVFiQz6NqPutygoOj14h_dWUM40jUZoDYOPCWZ4o-7XrDU-BgAv4MGxTyhQwXMo_6-WUdHamgIQPIwEhHm06QY9d9-fj_vuputur-e9thu8uMfObPzprkbuYZoNL93daPH1sXh_m71OsosnNx1mz-3ZpLOKllLZsLr4xwI62tk-LO155YPd_dJW2bMYGPO4wkGkE4XjlNJUcsKEDoNIJIRLJolmmgWCYx1JHishmVBEKSqpjkRMwwhoAa3_ds-lSaWpVurNs1Pzc6ycmEY1abUUAcJAADD6DT8GZDk
ClassificationCodes U491.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12141/j.issn.1000-565X.230386
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL Speed Prediction for Road Around Large Scale Activities Venues Considering Multiple Factors Synergism
EndPage 44
ExternalDocumentID hnlgdxxb202408004
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
PSX
TCJ
ID FETCH-LOGICAL-s1044-6b159edb1cf33fa6248e7598d26a4a2e4e45861e9a6cb8a48b2bb3a3e98c37903
ISSN 1000-565X
IngestDate Thu May 29 04:15:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords XGBoost模型
urban transportation
多因素耦合
speed prediction
large scale activity
速度预测
长短时记忆神经网络(LSTM)
Long Short-Term Memory
大型活动
城市交通
XGBoost model
multiple factors synergism
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1044-6b159edb1cf33fa6248e7598d26a4a2e4e45861e9a6cb8a48b2bb3a3e98c37903
PageCount 11
ParticipantIDs wanfang_journals_hnlgdxxb202408004
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle 华南理工大学学报(自然科学版)
PublicationTitle_FL Journal of South China University of Technology(Natural Science Edition)
PublicationYear 2024
Publisher 综合交通运行监测与服务北京市重点实验室,北京 100161
北京工业大学 交通工程北京市重点实验室,北京 100124%福建省高速公路联网运营有限公司,福建 福州 350001%北京市交通运行监测调度中心,北京 100161
Publisher_xml – name: 北京工业大学 交通工程北京市重点实验室,北京 100124%福建省高速公路联网运营有限公司,福建 福州 350001%北京市交通运行监测调度中心,北京 100161
– name: 综合交通运行监测与服务北京市重点实验室,北京 100161
SSID ssib008679807
ssib036435713
ssib001129195
ssib051370482
ssib023167209
ssib006703757
ssib001166550
ssib000969305
ssj0000561675
ssib002039873
ssib008143609
ssib002263912
ssib020475101
Score 2.396081
Snippet U491.1;...
SourceID wanfang
SourceType Aggregation Database
StartPage 34
Title 多因素协同的大型活动场馆周边路段速度预测
URI https://d.wanfangdata.com.cn/periodical/hnlgdxxb202408004
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANJT24kWsH_hNkQ4osjWZTCYz4GWy3aWI9WILvZUkm20PsoJtofTkoXiwinqtokVK7UkvLWIF_0368S9872V2d7QK1Ut4mXlf8142783szIvnjfJ21E7jIqppnemaaIl2TRcqrwVShYHIIES38HDy5AM5MS3uzUQzA4Ojzq6lpcVsLF_547mS__EqtIFf8ZTsP3i2xxQaAAb_whU8DNcT-Zg1ImYE0wYBnTDjs0bMEkFAxNQ4U03q8pmqYxdgKmGpTExdDaYS1pBIlSREZZhR1FVnCXDWzEimJLUE1KVY0mCJJiBmponkBloiRMadEyQUaIEQyTkJlYigEjcb7irZsICOSUnfikPm0S_amnHi2QMkaQs4TZbUmSLdFFAZ5ANCE4kA0ILmfSro0oRcUfWWQsh4TcitSR1NRBIRtd9HIWsmNB6tSPUYrWwcFI2C0PIkFyyMWoHpjCtIdQ2vNalpAXcVhoveHsDqd0MKJqi0dSqMQZChRdf0hrzSxF4ATNB1fGJHQz4gqkp5iW4G01vHV0OvkycqziQLkTmJiAk5xlt8AiJ0PI5Qo9FV3baAPrx-nNXtgHJ_JxBixQFI9mfcSBlx542gnLBn16OrBKqq53ksNPNAVLEZ-Y_1-ONJhPD3auiUX813Hs21lpczTmX4qOjvEIfJIITfITM-ef-hOw3XbtzCOUSg3XspI-ffe-6HWsVuGgt5upPmyxi_DN1PyxVMKqRT5g6LVKr-sgn3RYyhrXeP1SV4Hz-ErD-K-2lzFISx360pVX2DQAJFRBszrFnspkM02p2_mIyOGXbaaWfOyYinznin7VR2xFTvpWFvYGX-rDdsk4WFkZu2ov2tc97dcnO9fLtxsLNRvnxVvn5xsL5abn4q36_t73wvn2-X7_aOtp6Vb7YPf3w7_Ppl__Pu0dMP5d7W0cfV_d218950szFVn6jZz7bUFgJfiJrMYIpUtLIgb4dhO5VcqCKOtGpxmYqUF6IQkZJBoVOZZyoVKuNZFqZhoVUextoPL3iDnced4qI3wsFNMH8TeZrmIlC5bvmtTLXTIpPKj4riknfDmmDWvpYXZo89NpdPgnTFO9X_WV_1BhefLBXXYLqxmF23T9tPxY_Xsw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%9A%E5%9B%A0%E7%B4%A0%E5%8D%8F%E5%90%8C%E7%9A%84%E5%A4%A7%E5%9E%8B%E6%B4%BB%E5%8A%A8%E5%9C%BA%E9%A6%86%E5%91%A8%E8%BE%B9%E8%B7%AF%E6%AE%B5%E9%80%9F%E5%BA%A6%E9%A2%84%E6%B5%8B&rft.jtitle=%E5%8D%8E%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E7%BF%81%E5%89%91%E6%88%90&rft.au=%E5%90%B4%E6%98%8E%E7%8F%A0&rft.au=%E9%AD%8F%E7%91%9E%E8%81%AA&rft.au=%E7%8E%8B%E6%99%B6%E6%99%B6&rft.date=2024-08-01&rft.pub=%E7%BB%BC%E5%90%88%E4%BA%A4%E9%80%9A%E8%BF%90%E8%A1%8C%E7%9B%91%E6%B5%8B%E4%B8%8E%E6%9C%8D%E5%8A%A1%E5%8C%97%E4%BA%AC%E5%B8%82%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC+100161&rft.issn=1000-565X&rft.volume=52&rft.issue=8&rft.spage=34&rft.epage=44&rft_id=info:doi/10.12141%2Fj.issn.1000-565X.230386&rft.externalDocID=hnlgdxxb202408004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhnlgdxxb%2Fhnlgdxxb.jpg