基于多目标回归的空调负荷预测方法

TU83%TU111; 针对空调为二次泵变流量系统时,考虑分区域供冷工况下,采用多目标回归方式解决负荷预测问题将有利于提高负荷预测准确性的情况,提出了两种多 目标回归的中央空调负荷预测模型,即多目标支持向量回归(support vector regression,SVR)负荷预测模型和多 目标长短期记忆(long short term memory,LSTM)神经网络负荷预测模型,利用上海市某医院的二次泵变流量系统数据对两个模型进行训练和预测,并与单目标回归预测模型进行比较.研究结果表明:相较单目标回归预测模型,两种多目标预测模型的预测精度更高;多目标SVR负荷预测模型较多目标LSTM负荷预测...

Full description

Saved in:
Bibliographic Details
Published in江苏大学学报(自然科学版) Vol. 45; no. 4; pp. 470 - 475
Main Authors 丛琳, 张勇
Format Journal Article
LanguageChinese
Published 东南大学能源热转换及其过程测控教育部重点实验室,江苏南京 210096 01.07.2024
Subjects
Online AccessGet full text
ISSN1671-7775
DOI10.3969/j.issn.1671-7775.2024.04.014

Cover

Abstract TU83%TU111; 针对空调为二次泵变流量系统时,考虑分区域供冷工况下,采用多目标回归方式解决负荷预测问题将有利于提高负荷预测准确性的情况,提出了两种多 目标回归的中央空调负荷预测模型,即多目标支持向量回归(support vector regression,SVR)负荷预测模型和多 目标长短期记忆(long short term memory,LSTM)神经网络负荷预测模型,利用上海市某医院的二次泵变流量系统数据对两个模型进行训练和预测,并与单目标回归预测模型进行比较.研究结果表明:相较单目标回归预测模型,两种多目标预测模型的预测精度更高;多目标SVR负荷预测模型较多目标LSTM负荷预测模型的预测准确性更高.
AbstractList TU83%TU111; 针对空调为二次泵变流量系统时,考虑分区域供冷工况下,采用多目标回归方式解决负荷预测问题将有利于提高负荷预测准确性的情况,提出了两种多 目标回归的中央空调负荷预测模型,即多目标支持向量回归(support vector regression,SVR)负荷预测模型和多 目标长短期记忆(long short term memory,LSTM)神经网络负荷预测模型,利用上海市某医院的二次泵变流量系统数据对两个模型进行训练和预测,并与单目标回归预测模型进行比较.研究结果表明:相较单目标回归预测模型,两种多目标预测模型的预测精度更高;多目标SVR负荷预测模型较多目标LSTM负荷预测模型的预测准确性更高.
Abstract_FL For the air conditioning with secondary pump variable flow system,considering the regional cooling situation,the multi-objective regression method was used to solve the load forecasting problem for improving the accuracy of load forecasting.For the central air conditioning,two multi-objective regression load forecasting models of multi-objective support vector regression(SVR)and multi-objective long short-term memory(LSTM)neural network were proposed.The two models were used to train and predict on the data of the secondary pump variable flow system of the hospital in Shanghai,and the results were compared with those of the single objective regression prediction model.The results show that the prediction accuracies of the two multi-objective prediction models are higher than that of the single objective regression prediction model,and the multi-objective SVR load forecasting model has higher prediction accuracy than the multi-objective LSTM load forecasting model.
Author 张勇
丛琳
AuthorAffiliation 东南大学能源热转换及其过程测控教育部重点实验室,江苏南京 210096
AuthorAffiliation_xml – name: 东南大学能源热转换及其过程测控教育部重点实验室,江苏南京 210096
Author_FL CONG Lin
ZHANG Yong
Author_FL_xml – sequence: 1
  fullname: CONG Lin
– sequence: 2
  fullname: ZHANG Yong
Author_xml – sequence: 1
  fullname: 丛琳
– sequence: 2
  fullname: 张勇
BookMark eNo9jz1LA0EYhLeIYIz5FzYWd77v7t7ubSnBLwjYaB12c3chIWzARUxvwEK0ELRIIBGxsRFBRTzw33gf_gtPFGFgYBhmeFZIzY5sTMgags-UUBsDv--c9VFI9KSUgU-Bch8qIa-R-n--TJrO9Q2ACAQTIqwTyBbpZ3qZ3U-L2WN-e5bN5tnHVTGdFA9p-XRavizKi7evu0n-ep7fvOfP16tkKdFDFzf_vEEOt7cOWrtee39nr7XZ9hwC5x4KABl2w0RTMDpmTGhpKI0URoigJMeky0wUhaGkCg1qBRCbqkExiCVF1iDrv7sn2iba9jqD0fGRrR47AzfsReOx-WEEXhGybzb1W1U
ClassificationCodes TU83%TU111
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1671-7775.2024.04.014
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL Forecasting method of air conditioning load based on multi-objective regression
EndPage 475
ExternalDocumentID jslgdxxb202404014
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
PSX
TCJ
ID FETCH-LOGICAL-s1044-160078c8fa20bae336a7b22d91d1109741fc3bdd887291b1a900ebb22215e7213
ISSN 1671-7775
IngestDate Thu May 29 04:00:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 长短期记忆神经网络
support vector regression
多输出
支持向量机回归
空调系统
air conditioning system
load forecasting
负荷预测
multi-output
long short term memory neural network
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1044-160078c8fa20bae336a7b22d91d1109741fc3bdd887291b1a900ebb22215e7213
PageCount 6
ParticipantIDs wanfang_journals_jslgdxxb202404014
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle 江苏大学学报(自然科学版)
PublicationTitle_FL Journal of Jiangsu University(Natural Science Edition)
PublicationYear 2024
Publisher 东南大学能源热转换及其过程测控教育部重点实验室,江苏南京 210096
Publisher_xml – name: 东南大学能源热转换及其过程测控教育部重点实验室,江苏南京 210096
SSID ssib006563668
ssib006704768
ssib002039913
ssib001050959
ssib001129590
ssib001215039
ssib002258346
ssj0002507558
ssib050757864
ssib023167349
ssib051373371
Score 2.3895853
Snippet TU83%TU111; 针对空调为二次泵变流量系统时,考虑分区域供冷工况下,采用多目标回归方式解决负荷预测问题将有利于提高负荷预测准确性的情况,提出了两种多 目标回归的中央空调负荷预测模型,即多目标支持向量回归(support vector regression,SVR)负荷预测模型和多 目标长短期记忆(long...
SourceID wanfang
SourceType Aggregation Database
StartPage 470
Title 基于多目标回归的空调负荷预测方法
URI https://d.wanfangdata.com.cn/periodical/jslgdxxb202404014
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBcIgJiBcxPvBNkDQoMrGnHzPdx57ZXYKgpwRyC_PaiMgKbgIhVwMeRA-CHhIwIl68iKAiLvgTfoO7iX9hVU_v7iQGiV6G2p7q7nr0TlU13VWeNyuCAkPqtl8IRX3MwOWDlyF9nqcsZIXkqb0UduduOL8obi_JpYljP2qnltZWs7l849B7Jf-jVWgDveIt2X_Q7GhQaAAY9AtP0DA8j6Rj0pREt0hsSFPgUzWxxQiioSUiOiYGWkJiKIGYH5Fjoi1O3CCaWRzoJRAw2o6jSAzI3AICBwdANUgM3TUxzCKHJJZExQhogLVt4aQqYzn0dG1jMBwhJqrlaDOWEtMgJqwBIVGGGEmawE5ClLK9gCrLCEwah5ZIIDio9YJX2iJXvUabGlYeCtlFFilQN34jERUk0rQ8ODvs9j2YGJ2RrVbqcKDEooPQosO4UCgxECmybHA-JIzjWxQj4CSWwQYKEMdpIbMISMsX4LSsgoBB5QQ7kjDoFOcCUYP6tJ2LkZihOnAKZYEIB8dJmVWHRL2jojUKUCWuBchmyeF6cazZVWSSmxCh06oEsDNYYRRAhFRVnxlatCpBp_vnipp5ElWRFufpiKrXQSPKdaitEcUJ5kYTzKESbFrg6tbvgTTl97sPVor19QyxwDBgbfkpFkV4dGLKxI24VduEkLSe0Qg9fqn3JR2UtJarlsEPvc_plIrXNjEgIuFhLWgOIypqQTTDXA98vMkAARBYqfEmgQx4xIdJIdF_Y4hhC_uOeD_uzTrB3PqbWOzFv0477azUfNSFU95JF1zOmOpLMe1NbNw77U07892due5yzN8449H-Tu9n73n_3dbu9ofBmyf97df97y92tzZ33_f2Pj7e-7yz9-zrr7ebgy9PB6--DT69POsttpoLybzviqf43YAK4QdYeELlqp0ymqUl52EaZYwVOigwyTAEEu2cZ0UBTgbTQRakmtIyAwyQfhmxgJ_zJjsPO-V5PP1IIUqjpRKqEFxlOudBnkZhyLI8kkF5wbvm2F52H8fu8h_L4eJRkC55J8Z_9cve5OqjtfIKOP2r2VW3in4DeBuzWg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E7%9B%AE%E6%A0%87%E5%9B%9E%E5%BD%92%E7%9A%84%E7%A9%BA%E8%B0%83%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B1%9F%E8%8B%8F%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E4%B8%9B%E7%90%B3&rft.au=%E5%BC%A0%E5%8B%87&rft.date=2024-07-01&rft.pub=%E4%B8%9C%E5%8D%97%E5%A4%A7%E5%AD%A6%E8%83%BD%E6%BA%90%E7%83%AD%E8%BD%AC%E6%8D%A2%E5%8F%8A%E5%85%B6%E8%BF%87%E7%A8%8B%E6%B5%8B%E6%8E%A7%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F%E5%8D%97%E4%BA%AC+210096&rft.issn=1671-7775&rft.volume=45&rft.issue=4&rft.spage=470&rft.epage=475&rft_id=info:doi/10.3969%2Fj.issn.1671-7775.2024.04.014&rft.externalDocID=jslgdxxb202404014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjslgdxxb%2Fjslgdxxb.jpg