基于多目标回归的空调负荷预测方法
TU83%TU111; 针对空调为二次泵变流量系统时,考虑分区域供冷工况下,采用多目标回归方式解决负荷预测问题将有利于提高负荷预测准确性的情况,提出了两种多 目标回归的中央空调负荷预测模型,即多目标支持向量回归(support vector regression,SVR)负荷预测模型和多 目标长短期记忆(long short term memory,LSTM)神经网络负荷预测模型,利用上海市某医院的二次泵变流量系统数据对两个模型进行训练和预测,并与单目标回归预测模型进行比较.研究结果表明:相较单目标回归预测模型,两种多目标预测模型的预测精度更高;多目标SVR负荷预测模型较多目标LSTM负荷预测...
Saved in:
Published in | 江苏大学学报(自然科学版) Vol. 45; no. 4; pp. 470 - 475 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Chinese |
Published |
东南大学能源热转换及其过程测控教育部重点实验室,江苏南京 210096
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1671-7775 |
DOI | 10.3969/j.issn.1671-7775.2024.04.014 |
Cover
Abstract | TU83%TU111; 针对空调为二次泵变流量系统时,考虑分区域供冷工况下,采用多目标回归方式解决负荷预测问题将有利于提高负荷预测准确性的情况,提出了两种多 目标回归的中央空调负荷预测模型,即多目标支持向量回归(support vector regression,SVR)负荷预测模型和多 目标长短期记忆(long short term memory,LSTM)神经网络负荷预测模型,利用上海市某医院的二次泵变流量系统数据对两个模型进行训练和预测,并与单目标回归预测模型进行比较.研究结果表明:相较单目标回归预测模型,两种多目标预测模型的预测精度更高;多目标SVR负荷预测模型较多目标LSTM负荷预测模型的预测准确性更高. |
---|---|
AbstractList | TU83%TU111; 针对空调为二次泵变流量系统时,考虑分区域供冷工况下,采用多目标回归方式解决负荷预测问题将有利于提高负荷预测准确性的情况,提出了两种多 目标回归的中央空调负荷预测模型,即多目标支持向量回归(support vector regression,SVR)负荷预测模型和多 目标长短期记忆(long short term memory,LSTM)神经网络负荷预测模型,利用上海市某医院的二次泵变流量系统数据对两个模型进行训练和预测,并与单目标回归预测模型进行比较.研究结果表明:相较单目标回归预测模型,两种多目标预测模型的预测精度更高;多目标SVR负荷预测模型较多目标LSTM负荷预测模型的预测准确性更高. |
Abstract_FL | For the air conditioning with secondary pump variable flow system,considering the regional cooling situation,the multi-objective regression method was used to solve the load forecasting problem for improving the accuracy of load forecasting.For the central air conditioning,two multi-objective regression load forecasting models of multi-objective support vector regression(SVR)and multi-objective long short-term memory(LSTM)neural network were proposed.The two models were used to train and predict on the data of the secondary pump variable flow system of the hospital in Shanghai,and the results were compared with those of the single objective regression prediction model.The results show that the prediction accuracies of the two multi-objective prediction models are higher than that of the single objective regression prediction model,and the multi-objective SVR load forecasting model has higher prediction accuracy than the multi-objective LSTM load forecasting model. |
Author | 张勇 丛琳 |
AuthorAffiliation | 东南大学能源热转换及其过程测控教育部重点实验室,江苏南京 210096 |
AuthorAffiliation_xml | – name: 东南大学能源热转换及其过程测控教育部重点实验室,江苏南京 210096 |
Author_FL | CONG Lin ZHANG Yong |
Author_FL_xml | – sequence: 1 fullname: CONG Lin – sequence: 2 fullname: ZHANG Yong |
Author_xml | – sequence: 1 fullname: 丛琳 – sequence: 2 fullname: 张勇 |
BookMark | eNo9jz1LA0EYhLeIYIz5FzYWd77v7t7ubSnBLwjYaB12c3chIWzARUxvwEK0ELRIIBGxsRFBRTzw33gf_gtPFGFgYBhmeFZIzY5sTMgags-UUBsDv--c9VFI9KSUgU-Bch8qIa-R-n--TJrO9Q2ACAQTIqwTyBbpZ3qZ3U-L2WN-e5bN5tnHVTGdFA9p-XRavizKi7evu0n-ep7fvOfP16tkKdFDFzf_vEEOt7cOWrtee39nr7XZ9hwC5x4KABl2w0RTMDpmTGhpKI0URoigJMeky0wUhaGkCg1qBRCbqkExiCVF1iDrv7sn2iba9jqD0fGRrR47AzfsReOx-WEEXhGybzb1W1U |
ClassificationCodes | TU83%TU111 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1671-7775.2024.04.014 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitle_FL | Forecasting method of air conditioning load based on multi-objective regression |
EndPage | 475 |
ExternalDocumentID | jslgdxxb202404014 |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS PSX TCJ |
ID | FETCH-LOGICAL-s1044-160078c8fa20bae336a7b22d91d1109741fc3bdd887291b1a900ebb22215e7213 |
ISSN | 1671-7775 |
IngestDate | Thu May 29 04:00:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 长短期记忆神经网络 support vector regression 多输出 支持向量机回归 空调系统 air conditioning system load forecasting 负荷预测 multi-output long short term memory neural network |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1044-160078c8fa20bae336a7b22d91d1109741fc3bdd887291b1a900ebb22215e7213 |
PageCount | 6 |
ParticipantIDs | wanfang_journals_jslgdxxb202404014 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 江苏大学学报(自然科学版) |
PublicationTitle_FL | Journal of Jiangsu University(Natural Science Edition) |
PublicationYear | 2024 |
Publisher | 东南大学能源热转换及其过程测控教育部重点实验室,江苏南京 210096 |
Publisher_xml | – name: 东南大学能源热转换及其过程测控教育部重点实验室,江苏南京 210096 |
SSID | ssib006563668 ssib006704768 ssib002039913 ssib001050959 ssib001129590 ssib001215039 ssib002258346 ssj0002507558 ssib050757864 ssib023167349 ssib051373371 |
Score | 2.3895853 |
Snippet | TU83%TU111; 针对空调为二次泵变流量系统时,考虑分区域供冷工况下,采用多目标回归方式解决负荷预测问题将有利于提高负荷预测准确性的情况,提出了两种多 目标回归的中央空调负荷预测模型,即多目标支持向量回归(support vector regression,SVR)负荷预测模型和多 目标长短期记忆(long... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 470 |
Title | 基于多目标回归的空调负荷预测方法 |
URI | https://d.wanfangdata.com.cn/periodical/jslgdxxb202404014 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBcIgJiBcxPvBNkDQoMrGnHzPdx57ZXYKgpwRyC_PaiMgKbgIhVwMeRA-CHhIwIl68iKAiLvgTfoO7iX9hVU_v7iQGiV6G2p7q7nr0TlU13VWeNyuCAkPqtl8IRX3MwOWDlyF9nqcsZIXkqb0UduduOL8obi_JpYljP2qnltZWs7l849B7Jf-jVWgDveIt2X_Q7GhQaAAY9AtP0DA8j6Rj0pREt0hsSFPgUzWxxQiioSUiOiYGWkJiKIGYH5Fjoi1O3CCaWRzoJRAw2o6jSAzI3AICBwdANUgM3TUxzCKHJJZExQhogLVt4aQqYzn0dG1jMBwhJqrlaDOWEtMgJqwBIVGGGEmawE5ClLK9gCrLCEwah5ZIIDio9YJX2iJXvUabGlYeCtlFFilQN34jERUk0rQ8ODvs9j2YGJ2RrVbqcKDEooPQosO4UCgxECmybHA-JIzjWxQj4CSWwQYKEMdpIbMISMsX4LSsgoBB5QQ7kjDoFOcCUYP6tJ2LkZihOnAKZYEIB8dJmVWHRL2jojUKUCWuBchmyeF6cazZVWSSmxCh06oEsDNYYRRAhFRVnxlatCpBp_vnipp5ElWRFufpiKrXQSPKdaitEcUJ5kYTzKESbFrg6tbvgTTl97sPVor19QyxwDBgbfkpFkV4dGLKxI24VduEkLSe0Qg9fqn3JR2UtJarlsEPvc_plIrXNjEgIuFhLWgOIypqQTTDXA98vMkAARBYqfEmgQx4xIdJIdF_Y4hhC_uOeD_uzTrB3PqbWOzFv0477azUfNSFU95JF1zOmOpLMe1NbNw77U07892due5yzN8449H-Tu9n73n_3dbu9ofBmyf97df97y92tzZ33_f2Pj7e-7yz9-zrr7ebgy9PB6--DT69POsttpoLybzviqf43YAK4QdYeELlqp0ymqUl52EaZYwVOigwyTAEEu2cZ0UBTgbTQRakmtIyAwyQfhmxgJ_zJjsPO-V5PP1IIUqjpRKqEFxlOudBnkZhyLI8kkF5wbvm2F52H8fu8h_L4eJRkC55J8Z_9cve5OqjtfIKOP2r2VW3in4DeBuzWg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E7%9B%AE%E6%A0%87%E5%9B%9E%E5%BD%92%E7%9A%84%E7%A9%BA%E8%B0%83%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B1%9F%E8%8B%8F%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E4%B8%9B%E7%90%B3&rft.au=%E5%BC%A0%E5%8B%87&rft.date=2024-07-01&rft.pub=%E4%B8%9C%E5%8D%97%E5%A4%A7%E5%AD%A6%E8%83%BD%E6%BA%90%E7%83%AD%E8%BD%AC%E6%8D%A2%E5%8F%8A%E5%85%B6%E8%BF%87%E7%A8%8B%E6%B5%8B%E6%8E%A7%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F%E5%8D%97%E4%BA%AC+210096&rft.issn=1671-7775&rft.volume=45&rft.issue=4&rft.spage=470&rft.epage=475&rft_id=info:doi/10.3969%2Fj.issn.1671-7775.2024.04.014&rft.externalDocID=jslgdxxb202404014 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjslgdxxb%2Fjslgdxxb.jpg |