非等熵可压缩Navier-Stokes-Maxwell方程组 Cauchy问题解的整体存在性

O175.29; 考察粘性等离子体物理中的非等熵可压缩Navier-Stokes-Maxwell方程组.借助非常数平衡解的小性以及对称子技巧,研究了三维全空间上的Cauchy问题.在初值为该平衡解的一个小摄动前提下,证明了该问题存在整体唯一光滑解.

Saved in:
Bibliographic Details
Published in北京工业大学学报 Vol. 44; no. 12; pp. 1567 - 1572
Main Authors 李新, 冯跃红, 王术
Format Journal Article
LanguageChinese
Published 北京工业大学应用数理学院,北京,100124 01.12.2018
Subjects
Online AccessGet full text
ISSN0254-0037
DOI10.11936/bjutxb2017110006

Cover

Abstract O175.29; 考察粘性等离子体物理中的非等熵可压缩Navier-Stokes-Maxwell方程组.借助非常数平衡解的小性以及对称子技巧,研究了三维全空间上的Cauchy问题.在初值为该平衡解的一个小摄动前提下,证明了该问题存在整体唯一光滑解.
AbstractList O175.29; 考察粘性等离子体物理中的非等熵可压缩Navier-Stokes-Maxwell方程组.借助非常数平衡解的小性以及对称子技巧,研究了三维全空间上的Cauchy问题.在初值为该平衡解的一个小摄动前提下,证明了该问题存在整体唯一光滑解.
Author 冯跃红
王术
李新
AuthorAffiliation 北京工业大学应用数理学院,北京,100124
AuthorAffiliation_xml – name: 北京工业大学应用数理学院,北京,100124
Author_FL LI Xin
WANG Shu
FENG Yuehong
Author_FL_xml – sequence: 1
  fullname: LI Xin
– sequence: 2
  fullname: FENG Yuehong
– sequence: 3
  fullname: WANG Shu
Author_xml – sequence: 1
  fullname: 李新
– sequence: 2
  fullname: 冯跃红
– sequence: 3
  fullname: 王术
BookMark eNrjYmDJy89LZWCQNDTQMzS0NDbTT8oqLalIMjIwNDc0NDAwMGNh4DQwMjXRNTAwNudg4C0uzkwyMDAxsjQ3NDbmZAh6OXfe87Wdz9u2Pu1f_7Sv-_melX6JZZmpRbrBJfnZqcW6vokV5ak5Oc-m7Xy-ovv57hYF58TS5IzKl9PXvVw048Xyxc9ntTybuuXJ3slP1854OmfFs4blPAysaYk5xam8UJqbIdTNNcTZQ9fH393T2dFHt9gQaL9uoqWhZWKKKdAhFokmFoaGqclGQGSZlmKRYphokgRyvqFFaqJ5YlKKhVGaqbGFmYV5soVlmmlSopllilmKMTeDJsTc8sS8tMS89Pis_NKiPKCN8UlZ6ZUpFeBAsDAEEkbGAPtSaOU
ClassificationCodes O175.29
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11936/bjutxb2017110006
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Global Existence of Solutions to Cauchy Problem for Non-isentropic Compressible Navier-Stokes-Maxwell Systems
EndPage 1572
ExternalDocumentID bjgydxxb201812012
GrantInformation_xml – fundername: 北京市自然科学基金资助项目; 国家自然科学基金资助项目
  funderid: (1164010,1132006); (11771031,11371042)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
P2P
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1042-a919ad52978a4811ec2ec29fd8d1a4b171118ea7abd82f538687c89f5ba69d6d3
ISSN 0254-0037
IngestDate Thu May 29 03:59:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords 整体光滑解
非等熵可压缩Navier-Stokes-Maxwell方程组
非常数平衡解
粘性等离子体
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1042-a919ad52978a4811ec2ec29fd8d1a4b171118ea7abd82f538687c89f5ba69d6d3
PageCount 6
ParticipantIDs wanfang_journals_bjgydxxb201812012
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationTitle 北京工业大学学报
PublicationTitle_FL Journal of Beijing University of Technology
PublicationYear 2018
Publisher 北京工业大学应用数理学院,北京,100124
Publisher_xml – name: 北京工业大学应用数理学院,北京,100124
SSID ssib004297133
ssib051370302
ssj0039890
ssib001129165
ssib002263171
Score 2.1785703
Snippet O175.29; 考察粘性等离子体物理中的非等熵可压缩Navier-Stokes-Maxwell方程组.借助非常数平衡解的小性以及对称子技巧,研究了三维全空间上的Cauchy问题.在初值为该平衡解的一个小摄动前提下,证明了该问题存在整体唯一光滑解.
SourceID wanfang
SourceType Aggregation Database
StartPage 1567
Title 非等熵可压缩Navier-Stokes-Maxwell方程组 Cauchy问题解的整体存在性
URI https://d.wanfangdata.com.cn/periodical/bjgydxxb201812012
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFI_GdoED4lN8q0L4hAJ1Yif2MUlTTYjtwDZpt8lOmqEhdRJtpTIuHCYkNAkOCJgQcIDDxmFwgQMC_hva0v-C99x0jboexqQqspzn957fq-OfE79ny7oBw9_P_IzbGVOuzbimtnZcZWcqqSmYfhyRYIDz3Lw3u8TuLPPlqWOPi9ElTX0r2ZgYV3IUr0Id-BWjZP_Ds_tMoQLK4F-4gofheigfk1gSWSEyJrFPggoREgvCIyEnMSeiSoKqKcREhHgrjEgg5xXOhfZCc_1BrWHPqbbZGB17REJDwyEQQ_qQCHYzUq0EnIHC4F6MhcAhUpBYkABqXCSVAZAaLpyEUGAkBM1cFA-aITEnMkLWQCPK0LCIi42WEfLHhgEJIqwJgTk3NQL5IyuGEgc8A69QAJ7Qig__P0aRCnY871d5dIejhdAwAgUIoz2KdEYk_tBkntG5Wnw3QsXYPpOj6w7EkhnjsdwwaLyyqSmjliNisL2xuhNNEOdEmONqECWeP9VhRW5j1p_iFMRYcag5hQkFltd-AZxQPjjo6ODEJ83RPHqt1WxrB5Mg4YebsSTjBrbotdVHadsQAbgr4wndM47v4x6HmaAyd3dhhKYBC9LCR3BA6oA2aRHK-HS0WuDUxeljP3ubK0X-ijPvcb6pAFW9Pa6oiZmrZ6q-WoB3i6esk_m6rBQMBtlpa2rj_hnrRCFb51nrXv_9h97es97T750XXzvPt3q_Pk8cSt3XP3q7W72fm6XBwOm_-dL_uP1351Pv7Wb31bc_v1929rY773a7T3bOWUvVeDGatfMjSewGxUA2JalUKYeOC8UEpbXEgZ_MUpFSxTT2hoqa8pVOhZMBmPCEnwiZca08mXqpe96arq_XaxesUqJ9pTLlwBLJZYDKtUs9zYXr0cTNqGQXreu5RVbyR05j5YDvLh2G6LJ1fDQ4rljTzYet2lWA0k19LXf5PyHRnos
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%9E%E7%AD%89%E7%86%B5%E5%8F%AF%E5%8E%8B%E7%BC%A9Navier-Stokes-Maxwell%E6%96%B9%E7%A8%8B%E7%BB%84+Cauchy%E9%97%AE%E9%A2%98%E8%A7%A3%E7%9A%84%E6%95%B4%E4%BD%93%E5%AD%98%E5%9C%A8%E6%80%A7&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E6%96%B0&rft.au=%E5%86%AF%E8%B7%83%E7%BA%A2&rft.au=%E7%8E%8B%E6%9C%AF&rft.date=2018-12-01&rft.pub=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%BA%94%E7%94%A8%E6%95%B0%E7%90%86%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC%2C100124&rft.issn=0254-0037&rft.volume=44&rft.issue=12&rft.spage=1567&rft.epage=1572&rft_id=info:doi/10.11936%2Fbjutxb2017110006&rft.externalDocID=bjgydxxb201812012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjgydxxb%2Fbjgydxxb.jpg