基于注意力机制多尺度卷积神经网络的轴承故障诊断

TP391; 提出了基于注意力机制的多尺度卷积神经网络(Multi-scale and Attentive Convolutional Neural Network,MACNN)进行轴承故障分类,该模型以一维Resnetl8网络结构为主体,卷积模块采用残差模块和空洞卷积并行方式以达到扩大感受野、避免特征信息丢失的目的,同时利用注意力机制可以自动提取有用特征的能力,将模型提取特征作为输入送入注意力机制模块,进一步提高模型故障分类能力.此外,采用边界平衡生成对抗网络(Boundary Equilibrium Generative Adversarial Networks,BEGAN)模型对故障数据...

Full description

Saved in:
Bibliographic Details
Published in华东理工大学学报(自然科学版) Vol. 50; no. 2; pp. 247 - 256
Main Authors 孙俊静, 顾幸生
Format Journal Article
LanguageChinese
Published 华东理工大学能源化工过程智能制造教育部重点实验室,上海 200237 01.05.2024
Subjects
Online AccessGet full text
ISSN1006-3080
DOI10.14135/j.cnki.1006-3080.20221223001

Cover

Loading…
Abstract TP391; 提出了基于注意力机制的多尺度卷积神经网络(Multi-scale and Attentive Convolutional Neural Network,MACNN)进行轴承故障分类,该模型以一维Resnetl8网络结构为主体,卷积模块采用残差模块和空洞卷积并行方式以达到扩大感受野、避免特征信息丢失的目的,同时利用注意力机制可以自动提取有用特征的能力,将模型提取特征作为输入送入注意力机制模块,进一步提高模型故障分类能力.此外,采用边界平衡生成对抗网络(Boundary Equilibrium Generative Adversarial Networks,BEGAN)模型对故障数据增强,改变不平衡数据集的比例,增加数据集样本数量,降低MACNN模型的过拟合,提高诊断的准确率.在帕德博恩轴承数据集(Paderborn University Dataset,PU)上验证MACNN模型,实验结果表明,该模型在特征提取和故障分类方面都表现出了良好的性能,优于当前主流模型.
AbstractList TP391; 提出了基于注意力机制的多尺度卷积神经网络(Multi-scale and Attentive Convolutional Neural Network,MACNN)进行轴承故障分类,该模型以一维Resnetl8网络结构为主体,卷积模块采用残差模块和空洞卷积并行方式以达到扩大感受野、避免特征信息丢失的目的,同时利用注意力机制可以自动提取有用特征的能力,将模型提取特征作为输入送入注意力机制模块,进一步提高模型故障分类能力.此外,采用边界平衡生成对抗网络(Boundary Equilibrium Generative Adversarial Networks,BEGAN)模型对故障数据增强,改变不平衡数据集的比例,增加数据集样本数量,降低MACNN模型的过拟合,提高诊断的准确率.在帕德博恩轴承数据集(Paderborn University Dataset,PU)上验证MACNN模型,实验结果表明,该模型在特征提取和故障分类方面都表现出了良好的性能,优于当前主流模型.
Abstract_FL Bearing faults can seriously reduce industrial production efficiency and even endanger the safety of people's lives and property.Monitoring the operating conditions of bearings conducting fault diagnosis are of great significance for ensuring the safe operation of the production process.This paper proposes a Multi-Scale and Attentive Convolutional Neural Network(MACNN)based on attention mechanism for bearing faults classification.Firstly,one-dimensional bearing signals are input into a convolution layer,followed by a maximum pooling layer to suppress noise and reduce information redundancy.Then,four MACNN modules are taken as input,each of which adopts a parallel network structure of ordinary convolution and void convolution.Under the premise without increasing model parameters,the model's receptive field is expanded to extract more fault features for improving the accuracy.In addition,the attention mechanism module is connected at the end of each MACNN model and the feature information is further extracted by using the ability of automatic extraction of important features.The average pooling layer is used in the network structure to prevent the overfitting and the full connection layer from the output of experimental classification results.Furthermore,the Boundary Equilibrium Generative Adversarial Networks(BEGAN)model is adopted to enhance fault data,change the proportion of unbalanced data sets,increase the number of dataset samples,reduce overfitting of MACNN model,and improve diagnostic accuracy.Finally,the experimental results on the Paderborn University Dataset show that MACNN can achieve better performance in feature extraction and fault classification,outperforming the state-of-the-art methods.
Author 孙俊静
顾幸生
AuthorAffiliation 华东理工大学能源化工过程智能制造教育部重点实验室,上海 200237
AuthorAffiliation_xml – name: 华东理工大学能源化工过程智能制造教育部重点实验室,上海 200237
Author_FL GU Xingsheng
SUN Junjing
Author_FL_xml – sequence: 1
  fullname: SUN Junjing
– sequence: 2
  fullname: GU Xingsheng
Author_xml – sequence: 1
  fullname: 孙俊静
– sequence: 2
  fullname: 顾幸生
BookMark eNo9j8tKw0AYhWdRwap9DBcuEv9_LulkKaVeoOBG12UyndTWkoJB7ANU0IIWF7qoRTfeNlJBUUgpvoyT1LewoLg6cD44H2eB5KJ2ZAhZRnCRIxOrTVdH-w0XATyHgQSXAqVIKQPAHMn_9_OkEMeNAGZUSPQwT8r2NvlKztPXp7Tbt73rdJjYk3d7N7AviU0e7NlH9jjK7m-ycT-bXGTjYTboTidv6elnenn8PRhOR7306nmJzIWqFZvCXy6S3fXyTmnTqWxvbJXWKk6MwKmjmJRc1zwllR8YNOBTYExqPzTU48Jo0EWuGQ-ZoAi-VkwgCFZUUhg_8BlbJCu_u0cqClVUrzbbhwfRzFjdq7XqtU4nmB3nQAEp-wH1pWqz
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.14135/j.cnki.1006-3080.20221223001
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Bearing Fault Diagnosis Based on Multi-Scale Convolutional Neural Network of Attention Mechanism
EndPage 256
ExternalDocumentID hdlgdxxb202402012
GrantInformation_xml – fundername: (国家自然科学基金); (国家自然科学基金)
  funderid: (国家自然科学基金); (国家自然科学基金)
GroupedDBID -02
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
P2P
PSX
TCJ
U1G
U5L
UY8
ID FETCH-LOGICAL-s1042-a3884cd6a8a9be1e0920338c9fe2645ec0c74c34f352109ca3510537a85e9b933
ISSN 1006-3080
IngestDate Thu May 29 03:59:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 注意力机制
fault diagnosis
卷积神经网络
BEGAN
故障诊断
attention mechanism
convolutional neural network
empty convolution
空洞卷积
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1042-a3884cd6a8a9be1e0920338c9fe2645ec0c74c34f352109ca3510537a85e9b933
PageCount 10
ParticipantIDs wanfang_journals_hdlgdxxb202402012
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 华东理工大学学报(自然科学版)
PublicationTitle_FL Journal of East China University of Science and Technology(Natural Science Edition)
PublicationYear 2024
Publisher 华东理工大学能源化工过程智能制造教育部重点实验室,上海 200237
Publisher_xml – name: 华东理工大学能源化工过程智能制造教育部重点实验室,上海 200237
SSID ssib002258161
ssib001104923
ssib057620135
ssib035757162
ssib036434644
ssib006703735
ssib000947709
ssib006595864
ssib051370438
ssib023167207
ssib001050798
ssj0039901
Score 2.3751698
Snippet TP391; 提出了基于注意力机制的多尺度卷积神经网络(Multi-scale and Attentive Convolutional Neural...
SourceID wanfang
SourceType Aggregation Database
StartPage 247
Title 基于注意力机制多尺度卷积神经网络的轴承故障诊断
URI https://d.wanfangdata.com.cn/periodical/hdlgdxxb202402012
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5CAqIH8YlvgtjHjTPT8-g-zuzOEsR4MYHcwrw28cEKJoGQcwQNaPCghxj04usiERSFDcE_4-7Gf-FXPb2zEyIShaXp7a6u_qqqd7qrt7vGMK65kltuy3NqZhYnNQyKtIZVglPLzDSXmekjpQvOU7e8yRnnxqw7OzJaq5xaWl5KJtLVP94r-R-rogx2pVuy_2DZkikKkId9kcLCSA9lYxa5TDZZGLDIoVRELPJYyFkgKCOwTmwSjQiYDKlE1hUxSgQLPcoEDpOqJDR1FdJAVYkGC30W-SzAp6ky6C6iTBgqzsg0mLR0CZgjA27oNxJUFToKhmRhU_UOni6LJNEQsSC2wEZVHtOBIe8ORQMAkgiiiQFzkwmFLVRgCvyAR5mGhq0zHnEmGuinTvKiO4FWAfEBQhJfiUb4y1Y-oSXiolW5S6JJpFRwCtSQg0qGJJIFFgsjhU8SaEIM_TarWysYoeVBRvVj-F9JIQ4nJZPFA6InPnXS5LCVUFgLI4K-GANSGbpsXg4GSadeAlNbikQFjc1CW1UVg0oSN6AlRdkkJeGJ1KiQpFsAKEqA1q5riQoTh4SKIljaRfwdPRWa6lRk8Z6twVxZBAnWzwS7OvEVcVP1GsougsUfmJ6xYnLV_Jy2792ZKHuYgPKxhII3rLW_PwL6QnZ_PltZSchE8G7oneJjNrxCzMNjQWPq5u2Kv-D4--IRmnB3KvsJWOs61f0CTGbCqlzspuCa1dcVeJgP_aE_YVPYCHu4X8Lh6wwisKnvWN473nC97Frcp3_ay-9YecDlKv1zTn9Kq-MYWhFHDDZQ0_W_KUndMGy34vZ8ZTE8fcI4rr3Y8aB4JJ00RlYXThnHKrFNTxtR903nZ-dZ78vH3tpGd_1Vb6vTffyt-3az-7nT7bzvPv3e_7Ddf_e6v7PR333e39nqb67t7X7tPfnRe_Ho1-bW3vZ67-WnM8ZMM5quT9b0O1tqixbd9Iu5EE6aebGIZZJbuSltk3ORylYO18vNUzP1nZQ7LTh-linTmJOHx_1YuLlMJOdnjdH2g3Z-zhhP8yyFkWM79hOwTBM7a1m562Y8s4QZp-eNq1oJc_qZvDh3YKhcOAzRRePo8Od_yRhdericX4avsZRc0SPsN9DL2FA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6%E5%A4%9A%E5%B0%BA%E5%BA%A6%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E8%BD%B4%E6%89%BF%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD&rft.jtitle=%E5%8D%8E%E4%B8%9C%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E5%AD%99%E4%BF%8A%E9%9D%99&rft.au=%E9%A1%BE%E5%B9%B8%E7%94%9F&rft.date=2024-05-01&rft.pub=%E5%8D%8E%E4%B8%9C%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E8%83%BD%E6%BA%90%E5%8C%96%E5%B7%A5%E8%BF%87%E7%A8%8B%E6%99%BA%E8%83%BD%E5%88%B6%E9%80%A0%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E4%B8%8A%E6%B5%B7+200237&rft.issn=1006-3080&rft.volume=50&rft.issue=2&rft.spage=247&rft.epage=256&rft_id=info:doi/10.14135%2Fj.cnki.1006-3080.20221223001&rft.externalDocID=hdlgdxxb202402012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhdlgdxxb%2Fhdlgdxxb.jpg