Reinforcement Learning-Based Electric Vehicles Energy Management Strategy with Battery Thermal Model

TM921.5; The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The w...

Full description

Saved in:
Bibliographic Details
Published in东华大学学报(英文版) Vol. 40; no. 1; pp. 80 - 87
Main Authors HUANG Gan, CAO Tongjie, HAN Junhua, ZHAO Ping, ZHANG Guanglin
Format Journal Article
LanguageEnglish
Published College of Information Science and Technology,Donghua University,Shanghai 201620,China%China Information Technology Designing&Consulting Destitute Co.,Ltd.,Beijing 100048,China%Zhengyuan Geomatics Group Co.,Ltd.,Beijing 101300,China 2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TM921.5; The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.
AbstractList TM921.5; The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.
Author ZHANG Guanglin
HAN Junhua
HUANG Gan
CAO Tongjie
ZHAO Ping
AuthorAffiliation College of Information Science and Technology,Donghua University,Shanghai 201620,China%China Information Technology Designing&Consulting Destitute Co.,Ltd.,Beijing 100048,China%Zhengyuan Geomatics Group Co.,Ltd.,Beijing 101300,China
AuthorAffiliation_xml – name: College of Information Science and Technology,Donghua University,Shanghai 201620,China%China Information Technology Designing&Consulting Destitute Co.,Ltd.,Beijing 100048,China%Zhengyuan Geomatics Group Co.,Ltd.,Beijing 101300,China
Author_xml – sequence: 1
  fullname: HUANG Gan
– sequence: 2
  fullname: CAO Tongjie
– sequence: 3
  fullname: HAN Junhua
– sequence: 4
  fullname: ZHAO Ping
– sequence: 5
  fullname: ZHANG Guanglin
BookMark eNo9UE1rwkAU3IOFWutfKHvtIfbtR8zmWMXWglJoba-yH2-TSNzAZov67xuwdOYwMMy8B3NHRqELSMgDgxkrlZJPhxmbFzzLOYcZB84YA2AjMv53b8m07w8wYM4LCeWYuA9sgu-ixSOGRDeoY2hClS10j46uWrQpNpZ-Y93YFnu6ChirC93qoKtr5TNFnXDwTk2q6UKnhPFCdzXGo27ptnPY3pMbr9sep386IV8vq91ynW3eX9-Wz5usZyAhU9Ya7kshjM-9LITzTpic2VIUXhrgWnFVSAm5zxmoIWskd7nhGrgURikxIY_XuycdvA7V_tD9xDB83Lvanc9mj8MqAthA8QtuD1wL
ClassificationCodes TM921.5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19884/j.1672-5220.202111001
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 87
ExternalDocumentID dhdxxb_e202301010
GroupedDBID -02
-0B
-SB
-S~
188
2B.
4A8
5VR
5XA
5XC
8RM
92D
92I
92M
93N
9D9
9DB
ABJNI
ACGFS
ADMLS
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEB
CCEZO
CDRFL
CHBEP
CW9
FA0
JUIAU
PSX
Q--
R-B
RT2
S..
T8R
TCJ
TGH
TTC
U1F
U1G
U5B
U5L
UGNYK
UZ2
UZ4
ID FETCH-LOGICAL-s1040-8ccb2f933bf5f473dfd3b51c937f4b02a82874405f5108cb2b42d5b2a0243b883
ISSN 1672-5220
IngestDate Thu May 29 03:59:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords energy management
electric vehicle(EV)
battery thermal management
reinforcement learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1040-8ccb2f933bf5f473dfd3b51c937f4b02a82874405f5108cb2b42d5b2a0243b883
PageCount 8
ParticipantIDs wanfang_journals_dhdxxb_e202301010
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle 东华大学学报(英文版)
PublicationTitle_FL Journal of Donghua University(English Edition)
PublicationYear 2023
Publisher College of Information Science and Technology,Donghua University,Shanghai 201620,China%China Information Technology Designing&Consulting Destitute Co.,Ltd.,Beijing 100048,China%Zhengyuan Geomatics Group Co.,Ltd.,Beijing 101300,China
Publisher_xml – name: College of Information Science and Technology,Donghua University,Shanghai 201620,China%China Information Technology Designing&Consulting Destitute Co.,Ltd.,Beijing 100048,China%Zhengyuan Geomatics Group Co.,Ltd.,Beijing 101300,China
SSID ssj0000627409
Score 2.2258053
Snippet TM921.5; The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management...
SourceID wanfang
SourceType Aggregation Database
StartPage 80
Title Reinforcement Learning-Based Electric Vehicles Energy Management Strategy with Battery Thermal Model
URI https://d.wanfangdata.com.cn/periodical/dhdxxb-e202301010
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9swEBZ7vLQPpSfdXphSPRlvfciO_Gg73oay25ZuUpZ9CZaPJMviQJPApr-lP7YzknyE3cK2L7aQZAk8msPjb2YI-VDZWVkJN7AC7nkW48KxQI87lhc4vMqFXzIPY4fPvgSjCft84V_s7f_uoZY2a3Gc_7ozruR_qAp9QFeMkv0HyraLQge0gb5wBQrD9V40_l7KvKe5dPE1qVJnVgyaqTBTWeBmkZs_yrnEvpmpivPrEC-mzk27Ve5YlWtziygMENfXsk7add96pSmjMadhQlOf8iHlKTYiRqOBbAxpFPQaAeURjXyantA4oZzTlFMe09jBoRBG4akB5aEcUnNat8RoEmFQQHd2k-irOV7Ws6tFdxQRgLip55tWtVyOYNa3RhtrZ4aKNFZoos5NouOwlMDUAg5_InT_GuD0DWFDWL4HX4HOc_Sxz7OFCVZN4NrQI4uQU9eX952Vu9VAsiNWRpaQCbBMKiI56xl2a7RGskRJfbou8BaXiyscdmQ8fm-Py3lZz7YbEMufyqXMt7vSHsW_PK8KcSdtoXStgoIBugdcu6-jVEqrHV5UCkeVwdoxXW4pxZBzprRis_QxvHsHkwU6nRnQgjOLeXFzI6Yl0gczENr75NCFjzBQe4fR8Oz0vPVhYoprJlFU7co6CB-3_HjnhjI4rq6AUD07bvyYPNIfYEakuOkJ2Svrp-RhLy3nM1Ls8JWxy1dGw1dGw1eG4iuj4yuj4SsD-crQfGVovjIkXz0nk5N0nIwsXY3EWjkIu-V5Ltwq9DxR-RUbeEVVeMJ3crDvKyZsN1OlJGy_AjXHYa5gbuELN8Ocn4Jz7wU5qJd1-ZIY8FEU8pz78BBjcFazqgod5odZaIeCZ-yIvNfvaKqlzWp6iyqv7jPpNXmAbeUzfEMO1j835VuwotfinSbmH3LzvJA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning-Based+Electric+Vehicles+Energy+Management+Strategy+with+Battery+Thermal+Model&rft.jtitle=%E4%B8%9C%E5%8D%8E%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=HUANG+Gan&rft.au=CAO+Tongjie&rft.au=HAN+Junhua&rft.au=ZHAO+Ping&rft.date=2023&rft.pub=College+of+Information+Science+and+Technology%2CDonghua+University%2CShanghai+201620%2CChina%25China+Information+Technology+Designing%26Consulting+Destitute+Co.%2CLtd.%2CBeijing+100048%2CChina%25Zhengyuan+Geomatics+Group+Co.%2CLtd.%2CBeijing+101300%2CChina&rft.issn=1672-5220&rft.volume=40&rft.issue=1&rft.spage=80&rft.epage=87&rft_id=info:doi/10.19884%2Fj.1672-5220.202111001&rft.externalDocID=dhdxxb_e202301010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdhdxxb-e%2Fdhdxxb-e.jpg