局部近邻标准化偏最小二乘的多模态间歇过程故障检测
本文针对多模态间歇过程数据多中心和模态方差差异明显的问题,提出了一种基于局部近邻标准化偏最小二乘方法.首先,采用统计模量方法处理间歇过程数据,再利用局部近邻标准化方法将统计模量后的训练数据进行高斯化处理,建立偏最小二乘监控模型,确定控制限;然后,同样对统计模量后的测试数据进行局部近邻标准化处理,再计算测试数据的高斯偏最小二乘监控指标,进行过程监视及故障检测.最后,通过数值实例和青霉素发酵过程验证方法有效性.实验结果表明所提方法解决了故障样本近邻集跨模态问题,对多模态数据具有更好的故障检测能力....
Saved in:
Published in | 控制理论与应用 Vol. 37; no. 5; pp. 1109 - 1117 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
沈阳化工大学信息工程学院,辽宁沈阳,110142%沈阳化工大学数理系,辽宁沈阳,110142
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-8152 |
DOI | 10.7641/CTA.2019.80725 |
Cover
Abstract | 本文针对多模态间歇过程数据多中心和模态方差差异明显的问题,提出了一种基于局部近邻标准化偏最小二乘方法.首先,采用统计模量方法处理间歇过程数据,再利用局部近邻标准化方法将统计模量后的训练数据进行高斯化处理,建立偏最小二乘监控模型,确定控制限;然后,同样对统计模量后的测试数据进行局部近邻标准化处理,再计算测试数据的高斯偏最小二乘监控指标,进行过程监视及故障检测.最后,通过数值实例和青霉素发酵过程验证方法有效性.实验结果表明所提方法解决了故障样本近邻集跨模态问题,对多模态数据具有更好的故障检测能力. |
---|---|
AbstractList | 本文针对多模态间歇过程数据多中心和模态方差差异明显的问题,提出了一种基于局部近邻标准化偏最小二乘方法.首先,采用统计模量方法处理间歇过程数据,再利用局部近邻标准化方法将统计模量后的训练数据进行高斯化处理,建立偏最小二乘监控模型,确定控制限;然后,同样对统计模量后的测试数据进行局部近邻标准化处理,再计算测试数据的高斯偏最小二乘监控指标,进行过程监视及故障检测.最后,通过数值实例和青霉素发酵过程验证方法有效性.实验结果表明所提方法解决了故障样本近邻集跨模态问题,对多模态数据具有更好的故障检测能力. |
Author | 李元 马雨含 冯立伟 张成 |
AuthorAffiliation | 沈阳化工大学信息工程学院,辽宁沈阳,110142%沈阳化工大学数理系,辽宁沈阳,110142 |
AuthorAffiliation_xml | – name: 沈阳化工大学信息工程学院,辽宁沈阳,110142%沈阳化工大学数理系,辽宁沈阳,110142 |
Author_FL | LI Yuan FENG Li-wei ZHANG Cheng MA Yu-han |
Author_FL_xml | – sequence: 1 fullname: LI Yuan – sequence: 2 fullname: MA Yu-han – sequence: 3 fullname: ZHANG Cheng – sequence: 4 fullname: FENG Li-wei |
Author_xml | – sequence: 1 fullname: 李元 – sequence: 2 fullname: 马雨含 – sequence: 3 fullname: 张成 – sequence: 4 fullname: 冯立伟 |
BookMark | eNotjz1Lw0AYgG-oYK1d_Q0uqe97ueRyYylqhYJLnUty3olaUjCI1Cn1K0MLpYMflA6KDl0EBR3UoX-muTb_woJOz_Y8PCskF7ZCRcgaQom7DDcq9XKJAoqSB5w6OZJHALA8dOgyKUbRYQCACJQ7mCfV9D3OLsfzySC7-DGPSZrcpL27tNM3ozh960-_e9Ovh9nwKn0ZmvGTiTvZ_Yd5TeaTZDbumtvrbDgyz7H57K6SJe03I1X8Z4HsbW3WK1Wrtru9UynXrAjBFpbm0hYOR-pxJYQWgXSZVNzjvgh8yjQLOKMu9ViAkinkQihua5S-p_a1LaVdIOt_3jM_1H540DhqnZ6Ei2Lj-LzZbLfbFCiAs9i3fwEvRWgG |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.7641/CTA.2019.80725 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Fault detection for multi-modal batch process based on the local neighborhood standardization partial least squares |
EndPage | 1117 |
ExternalDocumentID | kzllyyy202005019 |
GrantInformation_xml | – fundername: 国家自然科学基金项目 funderid: (61490701, 61673279) |
GroupedDBID | -01 -0Y 2B. 4A8 5XA 5XJ 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CCVFK CUBFJ CW9 PSX TCJ TGT U1G U5S UY8 |
ID | FETCH-LOGICAL-s1039-f7c39571287e99f9bc64ce787a9ba24f4b7426284b1c4e1799e73f1ca8edf3cc3 |
ISSN | 1000-8152 |
IngestDate | Thu May 29 04:08:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 局部近邻标准化 故障检测 多模态间歇过程 偏最小二乘 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1039-f7c39571287e99f9bc64ce787a9ba24f4b7426284b1c4e1799e73f1ca8edf3cc3 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_kzllyyy202005019 |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 控制理论与应用 |
PublicationTitle_FL | Control Theory & Applications |
PublicationYear | 2020 |
Publisher | 沈阳化工大学信息工程学院,辽宁沈阳,110142%沈阳化工大学数理系,辽宁沈阳,110142 |
Publisher_xml | – name: 沈阳化工大学信息工程学院,辽宁沈阳,110142%沈阳化工大学数理系,辽宁沈阳,110142 |
SSID | ssib001102751 ssib002258297 ssib023646306 ssib057620041 ssib051372463 ssj0042201 ssib023167526 |
Score | 2.2627943 |
Snippet | ... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1109 |
Title | 局部近邻标准化偏最小二乘的多模态间歇过程故障检测 |
URI | https://d.wanfangdata.com.cn/periodical/kzllyyy202005019 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR09b9QwNKraBQbEp_hWkfB4kDh2bG8kuZwqRFlopW5VksuBRHVItAztdOXrhlaqGPhQ1QEEQxckkGAAhv6ZXtr7F7z3Lr2kpUOLdIp89sv7tP3su-dny7qZxaKJy4ia40q7JrxmWjMxd2pSJdyjjFgURDN535uYFndn5MzI6J3q6ZKF5Fa6dOi5kv-xKtSBXfGU7DEsO0QKFVAG-8ITLAzPI9mYRZIFDgYrRIZpl_maRZoFDWYcquEsCFjkMd9msOcHYHhqjwohM4MCvN5AGBMSHkBoU41ggY9gWDDMAGbFDNQIhPEFlhGzZr6DBXhXE1GjWCCoqU5EiR8sKATWxI8BupKAfaSLwC5R91gATUF1xUzII-YP-AdsHnFikyBAPUI-kUmNYMg_4BQEI4DiXocisvUCBIhrt2wxzIdPSAwFpESJBPygBAG0IaoRmdHM2NUWYMRvkHwByScQ1jSqv6dwu4xepBFAonLEFZFyA3efVQJAJgtFDyQHbfoe4W7sadwhskPgoX6HwIAZ5OIwisgMoKk6tUZkqn8Y4KGDVyoDvPxf9si00IFKCyl8F3rhMXmo-EpMSqAduc-ZDjL4FJOGrHhGzGxbWWWBi1WHeXDlCfTg4ZSPYZcw4m01OBh_ICv646W5ucXFRTSgLW3M-zvGlcJAjTG_PnnvQbklcPCP-coSlUs8Tb73nWMmCFluQfA-Bc8tIw-k4ypeuTECtuc4Aw3DyATndMX6UBmDxLAoxu39QtCpwHYrbj-sLGCnTlunip3nuD-YRs5YI0uPzlonK_lIz1kTve-d_ovN3a03_ed_8o_dXvd1b_Vdb3kt3-j0vq1t_17d_vVhZ_1l78t6vvkp7yz33__Iv3Z3t7o7myv521f99Y38cyf_uXLemm5EU-FErbhqpTZPsSAtleIf9rBYVZkxLZOknkgzcOaxSWIuWiJReHWFFomTigyzSGbKbTlprLNmy01T94I12n7Szi5a48rmTcdLEyOMFqnUsVCZB45eNhPtxUZdsm4UepgtptL52YPWvHwEmCvWiXL4XrVGF54-y67BBmEhuV70gb8G7cUj |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%B1%80%E9%83%A8%E8%BF%91%E9%82%BB%E6%A0%87%E5%87%86%E5%8C%96%E5%81%8F%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E7%9A%84%E5%A4%9A%E6%A8%A1%E6%80%81%E9%97%B4%E6%AD%87%E8%BF%87%E7%A8%8B%E6%95%85%E9%9A%9C%E6%A3%80%E6%B5%8B&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E6%9D%8E%E5%85%83&rft.au=%E9%A9%AC%E9%9B%A8%E5%90%AB&rft.au=%E5%BC%A0%E6%88%90&rft.au=%E5%86%AF%E7%AB%8B%E4%BC%9F&rft.date=2020-05-01&rft.pub=%E6%B2%88%E9%98%B3%E5%8C%96%E5%B7%A5%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E8%BE%BD%E5%AE%81%E6%B2%88%E9%98%B3%2C110142%25%E6%B2%88%E9%98%B3%E5%8C%96%E5%B7%A5%E5%A4%A7%E5%AD%A6%E6%95%B0%E7%90%86%E7%B3%BB%2C%E8%BE%BD%E5%AE%81%E6%B2%88%E9%98%B3%2C110142&rft.issn=1000-8152&rft.volume=37&rft.issue=5&rft.spage=1109&rft.epage=1117&rft_id=info:doi/10.7641%2FCTA.2019.80725&rft.externalDocID=kzllyyy202005019 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg |