Multi-GAT:基于多度量衡构建图的故障诊断方法

基于图神经网络的故障诊断方法,通常需要根据度量衡确定样本之间的相似性,进而构建图的拓扑结构.然而,根据单一度量衡可能无法准确衡量数据样本之间的相似性,进而导致无法准确表征样本之间的关系.因此,选用不同的度量衡会极大地影响图神经网络的诊断性能.为了解决通过单一度量衡无法准确表征数据样本之间相关性的问题,本文提出了一种基于多度量衡构造图的故障诊断模型——Multi-GAT.通过结合3种度量衡的计算结果,从而判断数据样本之间相关性的强弱.本文改进了图注意力网络的评分函数,使其能够依据样本之间相关性的强弱更准确地确定数据样本之间的相似性.在本文基准数据集上的实验表明,Multi-GAT能够提升模型的诊...

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 41; no. 5; pp. 931 - 940
Main Authors 曹洁, 陈泽阳, 王进花
Format Journal Article
LanguageChinese
Published 兰州理工大学计算机与通信学院,甘肃兰州 730050 01.05.2024
兰州城市学院信息工程学院,甘肃兰州 730050%兰州理工大学计算机与通信学院,甘肃兰州 730050%兰州理工大学 电气工程与信息工程学院,甘肃兰州 730050
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2023.20697

Cover

Abstract 基于图神经网络的故障诊断方法,通常需要根据度量衡确定样本之间的相似性,进而构建图的拓扑结构.然而,根据单一度量衡可能无法准确衡量数据样本之间的相似性,进而导致无法准确表征样本之间的关系.因此,选用不同的度量衡会极大地影响图神经网络的诊断性能.为了解决通过单一度量衡无法准确表征数据样本之间相关性的问题,本文提出了一种基于多度量衡构造图的故障诊断模型——Multi-GAT.通过结合3种度量衡的计算结果,从而判断数据样本之间相关性的强弱.本文改进了图注意力网络的评分函数,使其能够依据样本之间相关性的强弱更准确地确定数据样本之间的相似性.在本文基准数据集上的实验表明,Multi-GAT能够提升模型的诊断精度,且拥有较好的稳定性.
AbstractList 基于图神经网络的故障诊断方法,通常需要根据度量衡确定样本之间的相似性,进而构建图的拓扑结构.然而,根据单一度量衡可能无法准确衡量数据样本之间的相似性,进而导致无法准确表征样本之间的关系.因此,选用不同的度量衡会极大地影响图神经网络的诊断性能.为了解决通过单一度量衡无法准确表征数据样本之间相关性的问题,本文提出了一种基于多度量衡构造图的故障诊断模型——Multi-GAT.通过结合3种度量衡的计算结果,从而判断数据样本之间相关性的强弱.本文改进了图注意力网络的评分函数,使其能够依据样本之间相关性的强弱更准确地确定数据样本之间的相似性.在本文基准数据集上的实验表明,Multi-GAT能够提升模型的诊断精度,且拥有较好的稳定性.
Abstract_FL Fault diagnosis methods based on graph neural networks usually require determining the correlation between samples based on a metric,which in turn constructs the topology of the graph.However,the correlation between data samples may not be accurately measured based on a single metric,which in turn may not accurately reflect the relationship between samples.Therefore,the choice of different metrics can greatly affect the diagnostic performance of graph neural networks.In order to solve the problem that the correlation between data samples cannot be accurately characterized by a single metric,a fault diagnosis model,the multi-metrics graph attention network(Multi-GAT),is proposed to construct graphs based on multiple metrics.The strength of correlation between data samples is determined by combining the results of the three metrics.The scoring function of the graph attention network is improved to determine the similarity between data samples more accurately based on the strength of correlation between the samples.Experiments on a benchmark dataset show that Multi-GAT is able to improve the diagnostic accuracy of the model and has good stability.
Author 曹洁
王进花
陈泽阳
AuthorAffiliation 兰州理工大学计算机与通信学院,甘肃兰州 730050;兰州城市学院信息工程学院,甘肃兰州 730050%兰州理工大学计算机与通信学院,甘肃兰州 730050%兰州理工大学 电气工程与信息工程学院,甘肃兰州 730050
AuthorAffiliation_xml – name: 兰州理工大学计算机与通信学院,甘肃兰州 730050;兰州城市学院信息工程学院,甘肃兰州 730050%兰州理工大学计算机与通信学院,甘肃兰州 730050%兰州理工大学 电气工程与信息工程学院,甘肃兰州 730050
Author_FL CHEN Ze-yang
CAO Jie
WANG Jin-hua
Author_FL_xml – sequence: 1
  fullname: CAO Jie
– sequence: 2
  fullname: CHEN Ze-yang
– sequence: 3
  fullname: WANG Jin-hua
Author_xml – sequence: 1
  fullname: 曹洁
– sequence: 2
  fullname: 陈泽阳
– sequence: 3
  fullname: 王进花
BookMark eNotjzFLw0AYhm-oYK1d_Q0uqd93l7tLu4WgVai4xLlc7J1UwxWMReJcERx0aocoSkHcxMHJCP4aE9t_YUCX99meh3eN1OzIakI2EFpSuLgVhH6LAmXViLaskToCgOMhp6ukmSTDCAARqORYJ539cXw-dLp-2Cme8u_8tnjOivxleX23mM_Lx0nxmRf3Xz_ZpJxeLbOHxdtNOXstZx_l-3SdrBgVJ7r5zwY53NkOg12nd9DdC_yekyAw4RhFuQesbSgOXAESWSQGUgNTRkmKkhkBXBvDmSd1hCAANeVKRfQoMsp4rEE2_7wXyhplj_sno_GZrYr908s4TtO0-uoCBxTsFxJTW0I
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7641/CTA.2023.20697
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Multi-GAT:A fault diagnosis method based on multi-metrics construction graphs
EndPage 940
ExternalDocumentID kzllyyy202405016
GroupedDBID -01
-0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
UY8
ID FETCH-LOGICAL-s1036-fa258039f21d460713b6d7e03afa72173f605eff5387eb10601e25aab2cbfaf83
ISSN 1000-8152
IngestDate Thu May 29 04:08:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
fault diagnosis
故障诊断
图注意力机制
深度学习
graph convolutional neural networks
graph attention mechanism
图卷积神经网络
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1036-fa258039f21d460713b6d7e03afa72173f605eff5387eb10601e25aab2cbfaf83
PageCount 10
ParticipantIDs wanfang_journals_kzllyyy202405016
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 控制理论与应用
PublicationTitle_FL Control Theory & Applications
PublicationYear 2024
Publisher 兰州理工大学计算机与通信学院,甘肃兰州 730050
兰州城市学院信息工程学院,甘肃兰州 730050%兰州理工大学计算机与通信学院,甘肃兰州 730050%兰州理工大学 电气工程与信息工程学院,甘肃兰州 730050
Publisher_xml – name: 兰州城市学院信息工程学院,甘肃兰州 730050%兰州理工大学计算机与通信学院,甘肃兰州 730050%兰州理工大学 电气工程与信息工程学院,甘肃兰州 730050
– name: 兰州理工大学计算机与通信学院,甘肃兰州 730050
SSID ssib001102751
ssib002258297
ssib023646306
ssib057620041
ssib051372463
ssj0042201
ssib023167526
Score 2.4136581
Snippet ...
SourceID wanfang
SourceType Aggregation Database
StartPage 931
Title Multi-GAT:基于多度量衡构建图的故障诊断方法
URI https://d.wanfangdata.com.cn/periodical/kzllyyy202405016
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxNBdOnHRQ_iJ35TwTlJ6u58T2-z6cYi1osp9FZ2k10FSwSbHtJzRfCgp_YQRSmIN_HgyQj-GhPbf-F7s5vspnqoQhhm38x78z4yeW82M2887zZ4FZ7EraAmuYQFCkvTmtES34hlbS0TaQKXMn_1oVxZ4_fXxfrMbLeya2m7myy2dv56ruR_rAowsCuekv0Hy06IAgDqYF8owcJQnsjG7vRs7Z5tAgKJBDENEkKFY6kjhFhOjGsCiJUkMgQW_7pBIk1sgJ9IEhMRzV2f0KEDHagAukJcbII-gmiB6AAxdYfeINq6JknsclEJDVZCRvIrLcdRLwKBH6uQuNYklI64T7R0pKIx27pgGx4Nd304sZPNtm6QcDwIBsFlC3BmkHQ-fLjsIDASK7soJK5DHDFsICGogAhhUH3zQXm5z9B9Vx3LwJHv-FKorZJ3B7Gi0HQuHyjDjsVCBSusGOWYr08Latw-kxzScJ0n6E4eS2EGFGoAYZBfSjT7k6U77j4Av-Jh8Ci_DsSUC8pzfxVTTVT8iSlcZB6amDyz1XGvpyRHr1dv2kVQE4NC5nuej2USf7qzudnr9VCVwFIgZ715qhRubpi3y6sPHpVhdIB_ZlfCOirwBPb4mWL2BFGG7XgHgWTlv_UiYIpWblmAJS3O2snWK06pu5Z8ooo8mSqKcXdaCHeSrpPFnceVoK951jtTrNYWbD71znkzO0_Oe6crOTwveEuTSbg0_DD4OXg9_NgfDj4dvXxzeHAwer87_D4Yvv3xq7872ntx1H93-OXVaP_zaP_b6OveRW-tETXrK7XiQpLaVoCJu7MYFOEzk9GgzTExI0tkW6U-i7NYwdqeZdIXaZZBEKEgBsJURykVcZzQVpLFmWaXvLnOs0562Vtgbd5K_UTQhGU8SLXmTMepT2MByCmPr3i3Csk3ih-crY3j9rt6gj7XvFPl1LnuzXWfb6c3IIzuJjcLq_8GST2QaQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-GAT%3A%E5%9F%BA%E4%BA%8E%E5%A4%9A%E5%BA%A6%E9%87%8F%E8%A1%A1%E6%9E%84%E5%BB%BA%E5%9B%BE%E7%9A%84%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E6%96%B9%E6%B3%95&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E6%9B%B9%E6%B4%81&rft.au=%E9%99%88%E6%B3%BD%E9%98%B3&rft.au=%E7%8E%8B%E8%BF%9B%E8%8A%B1&rft.date=2024-05-01&rft.pub=%E5%85%B0%E5%B7%9E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E9%80%9A%E4%BF%A1%E5%AD%A6%E9%99%A2%2C%E7%94%98%E8%82%83%E5%85%B0%E5%B7%9E+730050&rft.issn=1000-8152&rft.volume=41&rft.issue=5&rft.spage=931&rft.epage=940&rft_id=info:doi/10.7641%2FCTA.2023.20697&rft.externalDocID=kzllyyy202405016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg