带工作休假和工作故障的M/M/1/N排队系统性能分析
本文在可修M/M/1/N排队系统中引入了启动时间、工作休假和工作故障策略.在该系统中,服务台在休假期间不是完全停止工作,而是处于低速服务状态.设定服务台在任何时候均可发生故障,当故障发生时立刻进行维修.且当服务台在正规忙期出现故障时,服务台仍以较低的服务速率为顾客服务.服务台的寿命时间和修理时间均服从指数分布,且在不同的时期有不同的取值.同时,从关闭期到正规忙期有服从指数分布的启动时间.本文建立此模型的有限状态拟生灭过程(QBD),使用矩阵几何方法得到系统的稳态概率向量,并应用基本阵和协方差矩阵理论,计算出系统稳态可用度、系统方差、系统吞吐率、系统稳态队长及各系统稳态概率等系统性能指标.同时,...
Saved in:
Published in | 控制理论与应用 Vol. 38; no. 12; pp. 2031 - 2044 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
兰州交通大学电子与信息工程学院,甘肃 兰州730070%兰州交通大学机电工程学院,甘肃兰州730070
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-8152 |
DOI | 10.7641/CTA.2021.10011 |
Cover
Summary: | 本文在可修M/M/1/N排队系统中引入了启动时间、工作休假和工作故障策略.在该系统中,服务台在休假期间不是完全停止工作,而是处于低速服务状态.设定服务台在任何时候均可发生故障,当故障发生时立刻进行维修.且当服务台在正规忙期出现故障时,服务台仍以较低的服务速率为顾客服务.服务台的寿命时间和修理时间均服从指数分布,且在不同的时期有不同的取值.同时,从关闭期到正规忙期有服从指数分布的启动时间.本文建立此模型的有限状态拟生灭过程(QBD),使用矩阵几何方法得到系统的稳态概率向量,并应用基本阵和协方差矩阵理论,计算出系统稳态可用度、系统方差、系统吞吐率、系统稳态队长及各系统稳态概率等系统性能指标.同时,通过数值实验对各系统参数对系统性能的影响进行了初探.文中的敏感性分析体现了这种方法的有效性和可用性.实验表明,文中提出的模型,可有效改善仅带有工作休假或工作故障策略排队模型的系统性能. |
---|---|
ISSN: | 1000-8152 |
DOI: | 10.7641/CTA.2021.10011 |