带Markov跳的离散时间随机控制系统的最大值原理

本文研究一类同时含有Markov跳过程和乘性噪声的离散时间非线性随机系统的最优控制问题,给出并证明了相应的最大值原理.首先,利用条件期望的平滑性,通过引入具有适应解的倒向随机差分方程,给出了带有线性差分方程约束的线性泛函的表示形式,并利用Riesz定理证明其唯一性.其次,对带Markov跳的非线性随机控制系统,利用针状变分法,对状态方程进行一阶变分,获得其变分所满足的线性差分方程.然后,在引入Hamilton函数的基础上,通过一对由倒向随机差分方程刻画的伴随方程,给出并证明了带有Markov跳的离散时间非线性随机最优控制问题的最大值原理,并给出该最优控制问题的一个充分条件和相应的Hamilto...

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 41; no. 5; pp. 895 - 904
Main Authors 蔺香运, 王鑫瑞, 张维海
Format Journal Article
LanguageChinese
Published 山东科技大学数学与系统科学学院,山东青岛 266590%山东科技大学电气与自动化工程学院,山东青岛 266590 01.05.2024
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2022.10807

Cover

Abstract 本文研究一类同时含有Markov跳过程和乘性噪声的离散时间非线性随机系统的最优控制问题,给出并证明了相应的最大值原理.首先,利用条件期望的平滑性,通过引入具有适应解的倒向随机差分方程,给出了带有线性差分方程约束的线性泛函的表示形式,并利用Riesz定理证明其唯一性.其次,对带Markov跳的非线性随机控制系统,利用针状变分法,对状态方程进行一阶变分,获得其变分所满足的线性差分方程.然后,在引入Hamilton函数的基础上,通过一对由倒向随机差分方程刻画的伴随方程,给出并证明了带有Markov跳的离散时间非线性随机最优控制问题的最大值原理,并给出该最优控制问题的一个充分条件和相应的Hamilton-Jacobi-Bellman方程.最后,通过一个实际例子说明了所提理论的实用性和可行性.
AbstractList 本文研究一类同时含有Markov跳过程和乘性噪声的离散时间非线性随机系统的最优控制问题,给出并证明了相应的最大值原理.首先,利用条件期望的平滑性,通过引入具有适应解的倒向随机差分方程,给出了带有线性差分方程约束的线性泛函的表示形式,并利用Riesz定理证明其唯一性.其次,对带Markov跳的非线性随机控制系统,利用针状变分法,对状态方程进行一阶变分,获得其变分所满足的线性差分方程.然后,在引入Hamilton函数的基础上,通过一对由倒向随机差分方程刻画的伴随方程,给出并证明了带有Markov跳的离散时间非线性随机最优控制问题的最大值原理,并给出该最优控制问题的一个充分条件和相应的Hamilton-Jacobi-Bellman方程.最后,通过一个实际例子说明了所提理论的实用性和可行性.
Abstract_FL The maximum principle(MP)of the discrete-time nonlinear stochastic optimal control problem is proved,in which the control systems are driven by both Markov jumps and multiplicative noise.Firstly,based on the adapted solutions of the backward stochastic difference equation,the linear functional with the constraint of a linear difference equation is represented.The Riesz theorem is used to prove the uniqueness of such representation.Secondly,the spike variation method is extend to the nonlinear stochastic difference equation with Markov jumps.The variation equation of such state equation is obtained.Thirdly,by introducing a Hamiltonian function,a necessary condition of the discrete-time nonlinear stochastic optimal control system with Markov jump is obtained.It is proved that the adjoint equation of the maximum principle of the system is a pair of backward stochastic difference equations.Moreover,a sufficient condition is also given and the corresponding Hamilton-Jacobi-Bellman equation is derived.Finally,a practical example is given to illustrate the practicability and feasibility of the proposed theory.
Author 蔺香运
王鑫瑞
张维海
AuthorAffiliation 山东科技大学数学与系统科学学院,山东青岛 266590%山东科技大学电气与自动化工程学院,山东青岛 266590
AuthorAffiliation_xml – name: 山东科技大学数学与系统科学学院,山东青岛 266590%山东科技大学电气与自动化工程学院,山东青岛 266590
Author_FL LIN Xiang-yun
ZHANG Wei-hai
WANG Xin-rui
Author_FL_xml – sequence: 1
  fullname: LIN Xiang-yun
– sequence: 2
  fullname: WANG Xin-rui
– sequence: 3
  fullname: ZHANG Wei-hai
Author_xml – sequence: 1
  fullname: 蔺香运
– sequence: 2
  fullname: 王鑫瑞
– sequence: 3
  fullname: 张维海
BookMark eNotjz9Lw0AYh2-oYK1d_Qwuie97l7vkJinBf1BxqXPJJRfRhgQaVOLUQcSpukihFDoo7QeoVDF-nST2W1jQ6bc8PA-_LVKLk1gTsoNg2sLCPbfTMilQaiI4YNdIHQHAcJDTTdJM00sFgAjU5lgn-8Xn7NTr95Kbn49FNb6vZnn58lqOlqvR-2r8VE6-yuG8eFxWi7zKp2ugnAyKt3kx-C6G0-r5YZtshF6U6ub_Nsj54UHHPTbaZ0cnbqttpAiMGpwz4DJkUmHImNJOqJjwBQrQQkugvi8DT1uWFlQ72rYdxws4BjZTMpBaWaxBdv-8t14cevFF9yq57sfrYrd3F0VZlq0PW8ABKfsF6LZhDg
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7641/CTA.2022.10807
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL A maximum principle for optimal control of discrete-time stochastic systems with Markov jump
EndPage 904
ExternalDocumentID kzllyyy202405012
GroupedDBID -01
-0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
UY8
ID FETCH-LOGICAL-s1032-553059f39b1f33be8fb36c6160e6e902cc9dae44e62e8e7788ad51d73b9d9eb43
ISSN 1000-8152
IngestDate Thu May 29 04:08:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 最优控制
Markov跳
Markov jump
倒向随机差分方程
optimal control
Hamilton-Jacobi-Bellman equations
maximum principle
backward stochastic difference equations
最大值原理
Hamilton-Jacobi-Bellman方程
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1032-553059f39b1f33be8fb36c6160e6e902cc9dae44e62e8e7788ad51d73b9d9eb43
PageCount 10
ParticipantIDs wanfang_journals_kzllyyy202405012
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 控制理论与应用
PublicationTitle_FL Control Theory & Applications
PublicationYear 2024
Publisher 山东科技大学数学与系统科学学院,山东青岛 266590%山东科技大学电气与自动化工程学院,山东青岛 266590
Publisher_xml – name: 山东科技大学数学与系统科学学院,山东青岛 266590%山东科技大学电气与自动化工程学院,山东青岛 266590
SSID ssib001102751
ssib002258297
ssib023646306
ssib057620041
ssib051372463
ssj0042201
ssib023167526
Score 2.4130592
Snippet ...
SourceID wanfang
SourceType Aggregation Database
StartPage 895
Title 带Markov跳的离散时间随机控制系统的最大值原理
URI https://d.wanfangdata.com.cn/periodical/kzllyyy202405012
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEB5CctGD-MQ3EeyTbJzp6edJejazBFEvJpCDEHZ2ehUNGzCJkJxyEPEUvUggBHJQkh8QieL6d3bX_AuremZnJmEPMcLSVHpqauqrmu1HtrrK8-7zwMI0QHWtLVJWY0I1a83AhrUQJm_JrExs4qJ8n4mZOfZ4ns-Pjb-oRC2triRTrfWR50rO4lXoA7_iKdl_8GwhFDqABv9CCx6G9lQ-JjEnkSJG4ImbpXckViSSJApJLIk2RDEkjCBRRGJBNCcmdATwCBJrRzBHAHPDXaqTyCChYmIkylfKMTuxKEdiqxuVR7i7lI_Mhg3v8klUd0Q8ZPZJno369VD5UU9xbAjExE4ThgCBDZEaoh0iaE0RgYu80IG8GrFq7czQINovWSSKUJGDGhDjYACh45KFo8LGzwFGDlcEnbL6fxHKyihE9ya7-wL8ZJqCJdDkTjriMycNY6ZRycwbkV_pKYCOsnQusGAuCI14DYUvyihN4Oo00dRdokRHD2CdxMHClJ9Vb2d8MAsax3fuKPSGFiQY500DDnJEnWinLryWhrtHKOeH_wNQmUkxZYEK-LGpNstxlg8pvDJvqqzSar4E01lF6pOzuxQMZ_f6rJkCh1MXHivLdUwRXfpmfXFxbW0NXwqf-1iCfIJKiUEcE2b66ZPn5XYhwB_tK8tXyvGk-fBvilkieLk9wVoLIiyjEngQSlqpJgFbdxydihAzRqkrv16YIksaizAeHgfhTgx22s3Oy8ridvaidyHflU6abIi55I2tv7rsna_kKr3iPer93MuGmT8_Dgbb7wd73f6Xr_2tw6Ot70fbn_o7v_qb-72Ph4OD7qC7Cwz9nY3et_3exu_e5u7g84er3lwjnq3P1PLqK7VlTLJZw3piXLdDnQTtMEysaiehaIlA-FZY7dNWS6dNy5gV1CorpVLNlAepDBOdapuw8Jo33lnq2OvepB9aTlUi_YSmrJUG2ioVhO2m9G1KhWrf8O7l8Bfy0XV54aQTb56C55Z3rhwJbnvjK29X7R3YM6wkd3PX_wU42MXU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%B8%A6Markov%E8%B7%B3%E7%9A%84%E7%A6%BB%E6%95%A3%E6%97%B6%E9%97%B4%E9%9A%8F%E6%9C%BA%E6%8E%A7%E5%88%B6%E7%B3%BB%E7%BB%9F%E7%9A%84%E6%9C%80%E5%A4%A7%E5%80%BC%E5%8E%9F%E7%90%86&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E8%94%BA%E9%A6%99%E8%BF%90&rft.au=%E7%8E%8B%E9%91%AB%E7%91%9E&rft.au=%E5%BC%A0%E7%BB%B4%E6%B5%B7&rft.date=2024-05-01&rft.pub=%E5%B1%B1%E4%B8%9C%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E6%95%B0%E5%AD%A6%E4%B8%8E%E7%B3%BB%E7%BB%9F%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E4%B8%9C%E9%9D%92%E5%B2%9B+266590%25%E5%B1%B1%E4%B8%9C%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%B8%8E%E8%87%AA%E5%8A%A8%E5%8C%96%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E4%B8%9C%E9%9D%92%E5%B2%9B+266590&rft.issn=1000-8152&rft.volume=41&rft.issue=5&rft.spage=895&rft.epage=904&rft_id=info:doi/10.7641%2FCTA.2022.10807&rft.externalDocID=kzllyyy202405012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg