基于稀疏自适应S变换和深度残差网络的轴承故障诊断方法

TM343%TN911; 复杂滚动轴承振动信号存在非线性、非平稳等问题,传统信号处理方法难以实现故障特征的有效提取和高精度的故障分类.针对此问题,从轴承振动信号的时频特性出发,提出一种基于稀疏自适应S变换和深度残差网络的轴承故障诊断方法.首先将采集的振动信号进行稀疏自适应S变换,得到轴承不同工况下的时频图像特征;然后构建深度残差网络结构,并合理的选取优化器、初始学习率等网络参数,提出基于深度残差网络的轴承故障诊断模型.对某滚动轴承振动数据集的计算结果表明,基于稀疏自适应S变换的时频分析方法具有较高的时频分辨率,所构建的深度残差网络模型能够准确识别不同故障状态及其严重程度下的轴承运行信息,为滚动...

Full description

Saved in:
Bibliographic Details
Published in电机与控制学报 Vol. 26; no. 8; pp. 112 - 119
Main Authors 李峰, 陈皖皖, 杨义
Format Journal Article
LanguageChinese
Published 上海电力大学 电气工程学院,上海200090 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TM343%TN911; 复杂滚动轴承振动信号存在非线性、非平稳等问题,传统信号处理方法难以实现故障特征的有效提取和高精度的故障分类.针对此问题,从轴承振动信号的时频特性出发,提出一种基于稀疏自适应S变换和深度残差网络的轴承故障诊断方法.首先将采集的振动信号进行稀疏自适应S变换,得到轴承不同工况下的时频图像特征;然后构建深度残差网络结构,并合理的选取优化器、初始学习率等网络参数,提出基于深度残差网络的轴承故障诊断模型.对某滚动轴承振动数据集的计算结果表明,基于稀疏自适应S变换的时频分析方法具有较高的时频分辨率,所构建的深度残差网络模型能够准确识别不同故障状态及其严重程度下的轴承运行信息,为滚动轴承的故障状态诊断提供了技术支撑.
AbstractList TM343%TN911; 复杂滚动轴承振动信号存在非线性、非平稳等问题,传统信号处理方法难以实现故障特征的有效提取和高精度的故障分类.针对此问题,从轴承振动信号的时频特性出发,提出一种基于稀疏自适应S变换和深度残差网络的轴承故障诊断方法.首先将采集的振动信号进行稀疏自适应S变换,得到轴承不同工况下的时频图像特征;然后构建深度残差网络结构,并合理的选取优化器、初始学习率等网络参数,提出基于深度残差网络的轴承故障诊断模型.对某滚动轴承振动数据集的计算结果表明,基于稀疏自适应S变换的时频分析方法具有较高的时频分辨率,所构建的深度残差网络模型能够准确识别不同故障状态及其严重程度下的轴承运行信息,为滚动轴承的故障状态诊断提供了技术支撑.
Author 杨义
陈皖皖
李峰
AuthorAffiliation 上海电力大学 电气工程学院,上海200090
AuthorAffiliation_xml – name: 上海电力大学 电气工程学院,上海200090
Author_FL LI Feng
CHEN Wan-wan
YANG Yi
Author_FL_xml – sequence: 1
  fullname: LI Feng
– sequence: 2
  fullname: CHEN Wan-wan
– sequence: 3
  fullname: YANG Yi
Author_xml – sequence: 1
  fullname: 李峰
– sequence: 2
  fullname: 陈皖皖
– sequence: 3
  fullname: 杨义
BookMark eNotj8tKw0AUQGdRwVr7A36Bm8Q7d5JJspTiCwouVHBXkkwiRk3BID5WRZTisyi2SCkILkQEK6JQjBR_xkzSv7Ciq7M7hzNGcmE19AiZoKBS3WLmVKB6W66KgKiCqQLFHMlTAEPRNGt1lBSjaN0B4DpnzMI8KSd38Xd8mT7W0lYjqz8NaodJfLOUNG7lxX1yfS57r0n8ILtnSa-b9q_Sz07aPsr67_LkSzaPB-1O9nIqW8-y9SHfmuNkxLc3I6_4zwJZmZ1ZLs0r5cW5hdJ0WYkoMFQ0H7nQhOVY6IBgVLjcRIbCdtEGx0ewuGlwGzg1KNPBQNS5pvk-F-iaBvVYgUz-eXft0LfDtUpQ3dkOh8WKCPY3Dvac330wh_PsB-fJbBc
ClassificationCodes TM343%TN911
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.15938/j.emc.2022.08.012
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Research on bearing fault diagnosis based on sparse adaptive S-transform and deep residual network
EndPage 119
ExternalDocumentID djykzxb202208012
GrantInformation_xml – fundername: 国网上海市电力公司科技项目
  funderid: (B3094020000L)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1032-4f26d4d9b92b0d31dc68232dac2a0bf2096876a061713507225644ff6d2c871e3
ISSN 1007-449X
IngestDate Thu May 29 04:05:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 深度残差网络
振动信号
滚动轴承
故障诊断
时频特性
稀疏自适应S变换
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1032-4f26d4d9b92b0d31dc68232dac2a0bf2096876a061713507225644ff6d2c871e3
PageCount 8
ParticipantIDs wanfang_journals_djykzxb202208012
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle 电机与控制学报
PublicationTitle_FL Electric Machines and Control
PublicationYear 2022
Publisher 上海电力大学 电气工程学院,上海200090
Publisher_xml – name: 上海电力大学 电气工程学院,上海200090
SSID ssib006563392
ssib025702231
ssib000271328
ssib051374584
ssib036435450
ssib017479520
ssib001129775
ssib023166998
Score 2.3266554
Snippet TM343%TN911;...
SourceID wanfang
SourceType Aggregation Database
StartPage 112
Title 基于稀疏自适应S变换和深度残差网络的轴承故障诊断方法
URI https://d.wanfangdata.com.cn/periodical/djykzxb202208012
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBcMjj4kUUFd9EsE-ycefRPd3H6d1ZgiReNoHcwjyViCuYBDSnIIr4DBGzSAgIHkQEI6IQXAn-jDub_IVVPT3ZyeMQvTQ11dVdVV0z01X9NIyrOHwfBJxWqM3SisNoAv9BJ63E4IuL1I7ixMT9zhM32diUc2OaTg8MrpRWLS3Mh6PR4qH7Sv7HqoADu-Iu2X-w7G6lgAAY7AspWBjSI9mY-JSIBpEe8R1MuU98l3gcly8AIBjhDeLDIyCBRiCeW1gKiIXTRAgoBCc-kNaJp_KERXgNMdIl0tTUHkOM5xMuFcZFGHjIOhGmAiQRNcUV5HCQK2RJR9UsiGwgIIAdRTmABok58RqEeyoLKq9rQArF3Sb5xZiF76wqBz2pIqsVanOlNsPUc5VGwJohABXmYgMLjxavlipdV4UoMpHVfg5IJrB8rgaIUgD7CkMTI2ugFeVhE4i4i0V7-YteCKhUlKrZ-kpQxAvVnJ6jZVciX9ujqawirNucFgaWJQWV1GA7q3aQH-6Rym9K1V0PDho7jrpYeLdvyk8T0N8gL3U0pl58nugncWh3SIU6_X52NLmLx3Valjqutii655jxePbhncUHIRJV0WsZNIYtiLyg6xj26hPjzfJUtVk-4Akddrfkg0KAYNv9qXqIeF1B-zEJxBOMlWJ8vEXRKk1F2-Aig1e_S09N28W5fLVqQbeQ3vyG2l0_oJvafddKg9atkqM4ecI4riO8ES__XE8aA4u3Txnj3fedP53XvU9Lvfby9tPPO0uPup23ze7yu-zVh-6bl9nmt27nY7bxoru50dta6f1a76093t76kT37na0-2Vlb3_76PGt_ydo_s--rp42phj9ZG6voi0wqc3heZcVJLRY7sQiFFVZj24wjxiGSiYPICqphalUFA6ckwGjCtCFAgz4WwpQ0ZbEVcddM7DPGUOteKzlrjJipQ8GdjHgKkQ4PolBEnEbgKgSRSFwenzOuaO1n9I9qbma_ac8fgeaCcaz_1Vw0hubvLySXwP2eDy_rF-IvirqnLw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%A8%80%E7%96%8F%E8%87%AA%E9%80%82%E5%BA%94S%E5%8F%98%E6%8D%A2%E5%92%8C%E6%B7%B1%E5%BA%A6%E6%AE%8B%E5%B7%AE%E7%BD%91%E7%BB%9C%E7%9A%84%E8%BD%B4%E6%89%BF%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E6%9C%BA%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E5%B3%B0&rft.au=%E9%99%88%E7%9A%96%E7%9A%96&rft.au=%E6%9D%A8%E4%B9%89&rft.date=2022-08-01&rft.pub=%E4%B8%8A%E6%B5%B7%E7%94%B5%E5%8A%9B%E5%A4%A7%E5%AD%A6+%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7200090&rft.issn=1007-449X&rft.volume=26&rft.issue=8&rft.spage=112&rft.epage=119&rft_id=info:doi/10.15938%2Fj.emc.2022.08.012&rft.externalDocID=djykzxb202208012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdjykzxb%2Fdjykzxb.jpg