前列腺癌瘤内及瘤周MRI影像组学对骨转移的诊断价值

R737.25; 目的 探讨基于磁共振成像(MRI)的前列腺癌(PCa)瘤内及瘤周影像组学对骨转移的诊断价值.方法 收集2018年1月-2023年1月在甘肃省人民医院经组织穿刺病理学检查确诊为PCa的211例患者的临床资料进行回顾性分析.将患者按照7:3的比例随机分为训练集(n=147)与验证集(n=64);分别从患者的T2加权成像(T2WI)、扩散加权成像(DWI)及扩散系数成像(ADC)3个序列勾画感兴趣区(ROIs),用于提取影像组学特征;使用Z-score(正则化)、LASSO算法进行影像组学特征的降维、选择、构建;然后基于逻辑回归(LR)机器学习分类器构建模型;绘制受试者操作特征(R...

Full description

Saved in:
Bibliographic Details
Published in解放军医学杂志 Vol. 50; no. 1; pp. 1 - 8
Main Authors 张云峰, 杨志军, 杨进, 苗国良, 何涵, 周逢海
Format Journal Article
LanguageChinese
Published 甘肃中医药大学第一临床医学院,甘肃 兰州 730000%兰州大学第一临床医学院,甘肃 兰州 730000%甘肃省人民医院泌尿外科干部病区,甘肃 兰州 730000 28.01.2025
Subjects
Online AccessGet full text
ISSN0577-7402
DOI10.11855/j.issn.0577-7402.0390.2024.1015

Cover

Abstract R737.25; 目的 探讨基于磁共振成像(MRI)的前列腺癌(PCa)瘤内及瘤周影像组学对骨转移的诊断价值.方法 收集2018年1月-2023年1月在甘肃省人民医院经组织穿刺病理学检查确诊为PCa的211例患者的临床资料进行回顾性分析.将患者按照7:3的比例随机分为训练集(n=147)与验证集(n=64);分别从患者的T2加权成像(T2WI)、扩散加权成像(DWI)及扩散系数成像(ADC)3个序列勾画感兴趣区(ROIs),用于提取影像组学特征;使用Z-score(正则化)、LASSO算法进行影像组学特征的降维、选择、构建;然后基于逻辑回归(LR)机器学习分类器构建模型;绘制受试者操作特征(ROC)曲线并计算曲线下面积(AUC),评估模型的效能;绘制校准曲线和决策曲线(DCA)评价模型的拟合度及临床净获益.结果 从T2WI、DWI和ADC中分别提取瘤内和瘤周影像组学特征各312个.使用LASSO回归模型最终筛选出与骨转移密切相关的瘤内影像组学特征10个(包括2个T2序列特征、7个DWI特征、1个ADC序列特征)及瘤周影像组学特征9个(包括4个T2序列特征、3个DWI特征、2个ADC序列特征).基于瘤内影像组学特征构建的模型在验证集中AUC为0.845(95%CI 0.747~0.943),基于瘤周影像组学特征构建的模型在验证集中AUC为0.818(95%CI 0.716~0.919);基于瘤内、瘤周影像组学特征及临床特征(包括Gleason评分、总前列腺特异性抗原、体重指数)构建的联合模型(列线图)的AUC为0.936(95%CI 0.902~0.970);校准曲线表明联合模型具有良好的拟合度,DCA表明联合模型具有更好的临床净获益.结论 瘤周影像组学对于初诊PCa骨转移有较高的诊断价值,且结合瘤内影像组学特征及临床特征可明显提高模型的诊断能力.
AbstractList R737.25; 目的 探讨基于磁共振成像(MRI)的前列腺癌(PCa)瘤内及瘤周影像组学对骨转移的诊断价值.方法 收集2018年1月-2023年1月在甘肃省人民医院经组织穿刺病理学检查确诊为PCa的211例患者的临床资料进行回顾性分析.将患者按照7:3的比例随机分为训练集(n=147)与验证集(n=64);分别从患者的T2加权成像(T2WI)、扩散加权成像(DWI)及扩散系数成像(ADC)3个序列勾画感兴趣区(ROIs),用于提取影像组学特征;使用Z-score(正则化)、LASSO算法进行影像组学特征的降维、选择、构建;然后基于逻辑回归(LR)机器学习分类器构建模型;绘制受试者操作特征(ROC)曲线并计算曲线下面积(AUC),评估模型的效能;绘制校准曲线和决策曲线(DCA)评价模型的拟合度及临床净获益.结果 从T2WI、DWI和ADC中分别提取瘤内和瘤周影像组学特征各312个.使用LASSO回归模型最终筛选出与骨转移密切相关的瘤内影像组学特征10个(包括2个T2序列特征、7个DWI特征、1个ADC序列特征)及瘤周影像组学特征9个(包括4个T2序列特征、3个DWI特征、2个ADC序列特征).基于瘤内影像组学特征构建的模型在验证集中AUC为0.845(95%CI 0.747~0.943),基于瘤周影像组学特征构建的模型在验证集中AUC为0.818(95%CI 0.716~0.919);基于瘤内、瘤周影像组学特征及临床特征(包括Gleason评分、总前列腺特异性抗原、体重指数)构建的联合模型(列线图)的AUC为0.936(95%CI 0.902~0.970);校准曲线表明联合模型具有良好的拟合度,DCA表明联合模型具有更好的临床净获益.结论 瘤周影像组学对于初诊PCa骨转移有较高的诊断价值,且结合瘤内影像组学特征及临床特征可明显提高模型的诊断能力.
Abstract_FL Objective To investigate the diagnostic value of magnetic resonance imaging(MRI)-based intratumoral and peritumoral radiomics of prostate cancer(PCa)for bone metastases.Methods A total of 211 patients diagnosed with PCa by biopsy pathology at Gansu Provincial People's Hospital from January 2018 to January 2023 were retrospectively analyzed.These patients were randomly divided into a training set(n=147)and a validation set(n=64)in a 7:3 ratio.Regions of interest(ROIs)were delineated from the patients'T2-weighted imaging(T2WI),diffusion-weighted imaging(DWI),and apparent diffusion coefficient imaging(ADC)sequences to extract radiomic features.Z-score(normalization)and the LASSO algorithm were used for feature dimensionality reduction,selection,and construction.A predictive model was then built using a logistic regression(LR)machine learning classifier.The receiver operating characteristic(ROC)curve was plotted,and the area under the curve(AUC)was calculated to assess the model's performance.Calibration curves and decision curves(DCA)were plotted to evaluate the model's fit and clinical net benefit.Results Radiomic features were extracted from the tumor and peritumoral regions in each patient's T2WI,DWI,and ADC images,with a total of 312 features from each region.The LASSO regression model ultimately identified 10 intratumoral radiomic features closely related to bone metastasis,including 2 T2 sequence features,7 DWI features,and 1 ADC sequence feature;and 9 peritumoral radiomic features,including 4 T2 sequence features,3 DWI features,and 2 ADC sequence features.The predictive model based on intratumoral radiomic features achieved an AUC of 0.845(95%CI 0.747-0.943),while the predictive model based on peritumoral radiomic features had an AUC of 0.818(95%CI 0.716-0.919).A combined nomogram model incorporating intratumoral features,peritumoral radiomic features,and clinical features(including Gleason score,total prostate specific antigen,and body mass index)yielded an AUC of 0.936(95%CI 0.902-0.970).Calibration curves indicated that the combined model had good fit,and DCA demonstrated that the combined model provided better clinical net benefit.Conclusions Peritumoral radiomics has excellent predictive value for bone metastasis in newly diagnosed PCa.Combining with intratumoral radiomics features and clinical features,it significantly enhances the predictive capability of the model.
Author 张云峰
何涵
周逢海
杨志军
杨进
苗国良
AuthorAffiliation 甘肃中医药大学第一临床医学院,甘肃 兰州 730000%兰州大学第一临床医学院,甘肃 兰州 730000%甘肃省人民医院泌尿外科干部病区,甘肃 兰州 730000
AuthorAffiliation_xml – name: 甘肃中医药大学第一临床医学院,甘肃 兰州 730000%兰州大学第一临床医学院,甘肃 兰州 730000%甘肃省人民医院泌尿外科干部病区,甘肃 兰州 730000
Author_FL He Han
Zhang Yun-Feng
Yang Jin
Zhou Feng-Hai
Miao Guo-Liang
Yang Zhi-Jun
Author_FL_xml – sequence: 1
  fullname: Zhang Yun-Feng
– sequence: 2
  fullname: Yang Zhi-Jun
– sequence: 3
  fullname: Yang Jin
– sequence: 4
  fullname: Miao Guo-Liang
– sequence: 5
  fullname: He Han
– sequence: 6
  fullname: Zhou Feng-Hai
Author_xml – sequence: 1
  fullname: 张云峰
– sequence: 2
  fullname: 杨志军
– sequence: 3
  fullname: 杨进
– sequence: 4
  fullname: 苗国良
– sequence: 5
  fullname: 何涵
– sequence: 6
  fullname: 周逢海
BookMark eNo9j01Lw0AYhPdQwVr7P3pJfN_dbHZ7lFK1UBFEz2XzJQ2SgkHUngRb0aIUL36dRYtYiifR2H_jmvgvjCjOZQYGZnjmSCHqRD4hFQQTUXK-EJrtOI5M4EIYwgJqAquCSYFaJgLyAin-V7OkHMdtBwARLAvtIqnr03N9cpX139Kbs_T6Th_39XDwEy5Gq-sNPX3WR8M06enxvZ68fj2OsulT-pCkt71sMvi8HH8kL_rwfZ7MBGo79st_XiKbS_WN2orRXFtu1BabRozA0BC2pEpRxSU4TPoSmAg8V1Duc3Rd10cLPR-dai7FGJPgMcWpbXGXKs_mkpVI5Xd3T0WBirZaYWd3J8ofW2EQHux3uzk1B8z52DfwFmmC
ClassificationCodes R737.25
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11855/j.issn.0577-7402.0390.2024.1015
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitle_FL Diagnostic value of intratumoral and peritumoral MRI radiomics for bone metastasis in prostate cancer
EndPage 8
ExternalDocumentID jfjyxzz202501001
GroupedDBID -05
2B.
4A8
5VS
5XA
5XF
92F
92I
93N
ABUWG
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVBZV
CCEZO
CCPQU
CIEJG
CW9
IPNFZ
KQ8
PQQKQ
PROAC
PSX
RIG
RNS
TCJ
TGQ
U1G
U5O
ID FETCH-LOGICAL-s1031-7682aa2a580b38e8037fdc725e51ccce141de1b9999a33380d3a52645c2ad6583
ISSN 0577-7402
IngestDate Thu May 29 04:00:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 前列腺癌
骨转移
prostate cancer
机器学习
bone metastases
peritumoral radiomics
machine learning
瘤周影像组学
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1031-7682aa2a580b38e8037fdc725e51ccce141de1b9999a33380d3a52645c2ad6583
PageCount 8
ParticipantIDs wanfang_journals_jfjyxzz202501001
PublicationCentury 2000
PublicationDate 2025-01-28
PublicationDateYYYYMMDD 2025-01-28
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-28
  day: 28
PublicationDecade 2020
PublicationTitle 解放军医学杂志
PublicationTitle_FL Medical Journal of Chinese People's Liberation Army
PublicationYear 2025
Publisher 甘肃中医药大学第一临床医学院,甘肃 兰州 730000%兰州大学第一临床医学院,甘肃 兰州 730000%甘肃省人民医院泌尿外科干部病区,甘肃 兰州 730000
Publisher_xml – name: 甘肃中医药大学第一临床医学院,甘肃 兰州 730000%兰州大学第一临床医学院,甘肃 兰州 730000%甘肃省人民医院泌尿外科干部病区,甘肃 兰州 730000
SSID ssib001104416
ssib002263991
ssib046619461
ssib051375714
ssj0058562
ssib038074682
ssib052002838
Score 2.3949661
Snippet R737.25; 目的 探讨基于磁共振成像(MRI)的前列腺癌(PCa)瘤内及瘤周影像组学对骨转移的诊断价值.方法...
SourceID wanfang
SourceType Aggregation Database
StartPage 1
Title 前列腺癌瘤内及瘤周MRI影像组学对骨转移的诊断价值
URI https://d.wanfangdata.com.cn/periodical/jfjyxzz202501001
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR1NaxQxdKgtFC_iJ37TggGhzJqZSSbJMbM7SxVapLTQW5mZ3VV6WMG2oHsSbEWLUrz4dRYtYimeRGv_jePWf-F72ezs6hZsPXlZHsn7fm-SvNlk4jhXskSIWpB6bqLCzGVhPXNTxrlLG2HK0lpKffN3wdR0ODnHbszz-aGR8b5dSyvLaSlr7Xuu5F-iCm0QVzwle4jIFkyhAWCIL_xChOH3QDEmMSdSEVkxgCRKkFgSyUmkSSyIgq6yASTRzOCE2ItAlUj9W5fyiJZTM9cRjiok8gxagJiAFkVEGjRdITo0QJVEisSKaA2EKBeotBGnDT4y14ZKIjKKC4kKkUPMECESRgQl9nbtxa5REjnowOADZmw1V5EByoZ5oQm0V4j0jdpVoopp1TSUiaZGmkb7sCUgEe2hGGLU3hIXkvZBkQalrwc8HVkaUA2sxxbwR7X_TYqPmxa7J9Mx941fGPod0X10MSoojV8K8yQGFbyGdjJ0R89ggV5GRxsqSS0QmfCAoejoQTcpzAbtwxM1qMCEIQBialhAdzyBFwzgBd58sO-_UGrQidBShrrIhjsy6QbEnbhbyV2B2BWYh8MIiLqOVqHNX5stikQ-UgF_TAGB4bYPUBlFHE7xvkmXC-EKRn9bIXA6MBJ2pnuvf924_4JEcm5WJMi9VHAv0UDREiQhw9dnvLcYK7bILjYW799rtTBPKX4n7Ygz4guBO1FGonj65kyv5vEo6986APUUFB3FpI0XSrCw9wErFuJ7y95hdu4FgoveVgr8DJtvtlJ0lrNccnMrc6H6qHO1a9i1v5hlDkI2G0nzVt-affa4c8wW22O6M3KecIZat086o1N2O9EpJ86fPMsfv9xb-9p-_bT96m3-aC3fWEfg-SYMhfnup_zhRntnNd96l29_-flhc2_3Y_v9TvvN6t72-o8XW993PucPvp125qrxbHnStffKuEt4qY0rwB1J4idc0jSQdUkD0ahlwud17mVZVveYV6t7KZTOKgkCcGAtSDgUjjzzkxpUbMEZZ7h5p1k_64xhvQkVMhTBHMoBylIpVUMGrJE0gDTLzjnj1gMLdt5YWvgzsucPgHPBOdobsS46w8t3V-qXoBpaTi_bfPgFDTz1xw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%89%8D%E5%88%97%E8%85%BA%E7%99%8C%E7%98%A4%E5%86%85%E5%8F%8A%E7%98%A4%E5%91%A8MRI%E5%BD%B1%E5%83%8F%E7%BB%84%E5%AD%A6%E5%AF%B9%E9%AA%A8%E8%BD%AC%E7%A7%BB%E7%9A%84%E8%AF%8A%E6%96%AD%E4%BB%B7%E5%80%BC&rft.jtitle=%E8%A7%A3%E6%94%BE%E5%86%9B%E5%8C%BB%E5%AD%A6%E6%9D%82%E5%BF%97&rft.au=%E5%BC%A0%E4%BA%91%E5%B3%B0&rft.au=%E6%9D%A8%E5%BF%97%E5%86%9B&rft.au=%E6%9D%A8%E8%BF%9B&rft.au=%E8%8B%97%E5%9B%BD%E8%89%AF&rft.date=2025-01-28&rft.pub=%E7%94%98%E8%82%83%E4%B8%AD%E5%8C%BB%E8%8D%AF%E5%A4%A7%E5%AD%A6%E7%AC%AC%E4%B8%80%E4%B8%B4%E5%BA%8A%E5%8C%BB%E5%AD%A6%E9%99%A2%2C%E7%94%98%E8%82%83+%E5%85%B0%E5%B7%9E+730000%25%E5%85%B0%E5%B7%9E%E5%A4%A7%E5%AD%A6%E7%AC%AC%E4%B8%80%E4%B8%B4%E5%BA%8A%E5%8C%BB%E5%AD%A6%E9%99%A2%2C%E7%94%98%E8%82%83+%E5%85%B0%E5%B7%9E+730000%25%E7%94%98%E8%82%83%E7%9C%81%E4%BA%BA%E6%B0%91%E5%8C%BB%E9%99%A2%E6%B3%8C%E5%B0%BF%E5%A4%96%E7%A7%91%E5%B9%B2%E9%83%A8%E7%97%85%E5%8C%BA%2C%E7%94%98%E8%82%83+%E5%85%B0%E5%B7%9E+730000&rft.issn=0577-7402&rft.volume=50&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.11855%2Fj.issn.0577-7402.0390.2024.1015&rft.externalDocID=jfjyxzz202501001
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjfjyxzz%2Fjfjyxzz.jpg