面向点云配准和地点识别的多头旋转注意力网络

点云配准和地点识别是移动机器人和自动驾驶车辆实现自主定位的关键技术.目前鲜有方法能够在实现高效地点识别的同时输出准确的6自由度位姿.本文提出了一种新颖的多头网络,该网络首先在统一的主干网络中提取稀疏而特征显著的点,随后分别在稠密点匹配头中解决点云配准问题,在全局描述头中解决地点识别问题.其中,在主干网络中创新应用3D-RoFormer机制,以一种低计算和存储复杂度的方式显式地编码特征点之间的相对位姿信息,从而学习到更显著和鲁棒的点特征,有效提高了网络的特征表达能力.在稠密点匹配头中,首先,构建稀疏点可靠的匹配关系,并据此由粗至精地确定稠密点的匹配关系,进而优化位姿估计.在全局描述头中,网络将稀...

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 40; no. 12; pp. 2187 - 2197
Main Authors 施成浩, 陈谢沅澧, 郭瑞斌, 肖军浩, 戴斌, 卢惠民
Format Journal Article
LanguageChinese
Published 国防科技大学智能科学学院,湖南长沙 410073%国防科技创新研究院无人系统技术研究中心,北京 100091 01.12.2023
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2023.30286

Cover

Abstract 点云配准和地点识别是移动机器人和自动驾驶车辆实现自主定位的关键技术.目前鲜有方法能够在实现高效地点识别的同时输出准确的6自由度位姿.本文提出了一种新颖的多头网络,该网络首先在统一的主干网络中提取稀疏而特征显著的点,随后分别在稠密点匹配头中解决点云配准问题,在全局描述头中解决地点识别问题.其中,在主干网络中创新应用3D-RoFormer机制,以一种低计算和存储复杂度的方式显式地编码特征点之间的相对位姿信息,从而学习到更显著和鲁棒的点特征,有效提高了网络的特征表达能力.在稠密点匹配头中,首先,构建稀疏点可靠的匹配关系,并据此由粗至精地确定稠密点的匹配关系,进而优化位姿估计.在全局描述头中,网络将稀疏的特征点及其特征向量进行压缩编码,获得对相关点云的全局描述子,实现高效的地点识别.为了验证算法的有效性并评估其性能,本文针对不同环境、不同传感器获得的数据集开展了实验研究.实验结果表明,本文方法在所有测试数据集中都具有很好的泛化能力,并较当前先进方法都有更优或相当的表现,降低连续点云配准误差约27%,降低闭环点云配准误差约37%.
AbstractList 点云配准和地点识别是移动机器人和自动驾驶车辆实现自主定位的关键技术.目前鲜有方法能够在实现高效地点识别的同时输出准确的6自由度位姿.本文提出了一种新颖的多头网络,该网络首先在统一的主干网络中提取稀疏而特征显著的点,随后分别在稠密点匹配头中解决点云配准问题,在全局描述头中解决地点识别问题.其中,在主干网络中创新应用3D-RoFormer机制,以一种低计算和存储复杂度的方式显式地编码特征点之间的相对位姿信息,从而学习到更显著和鲁棒的点特征,有效提高了网络的特征表达能力.在稠密点匹配头中,首先,构建稀疏点可靠的匹配关系,并据此由粗至精地确定稠密点的匹配关系,进而优化位姿估计.在全局描述头中,网络将稀疏的特征点及其特征向量进行压缩编码,获得对相关点云的全局描述子,实现高效的地点识别.为了验证算法的有效性并评估其性能,本文针对不同环境、不同传感器获得的数据集开展了实验研究.实验结果表明,本文方法在所有测试数据集中都具有很好的泛化能力,并较当前先进方法都有更优或相当的表现,降低连续点云配准误差约27%,降低闭环点云配准误差约37%.
Abstract_FL Point cloud registration and place recognition are critical tasks for localization in robotics and autonomous driving.There are few methods that can achieve efficient place recognition while providing accurate 6-degree-of-freedom pose.In this paper,we propose a novel multi-head network that simultaneously addresses both of these tasks.The network first extracts discriminative sparse points from the point cloud using a backbone network,and then solves the point cloud registration task in a dense point matching head and the place recognition task in a global descriptor head.In the backbone,we apply a novel 3D-RoFormer mechanism that explicitly encodes the relative pose information of points efficiently,result-ing in more discriminative and robust point features and significantly improving network performance.In the dense point matching head,the network establishes reliable correspondences between sparse points and progressively finds coarse-to-fine dense point correspondences to improve final pose estimation.In the global descriptor head,the network compresses the sparse point features into a global descriptor to describe the features of the current point cloud and achieves place recognition.We extensively evaluate our method on multiple datasets collected by different sensors in various environ-ments.Experimental results show that our method depicts strong generalization ability on all the datasets,outperforming or performing comparably to the state-of-the-art methods,among which the continuous point cloud registration error is reduced by about 27%,and the closed-loop point cloud registration error is reduced by about 37%.
Author 陈谢沅澧
肖军浩
戴斌
施成浩
郭瑞斌
卢惠民
AuthorAffiliation 国防科技大学智能科学学院,湖南长沙 410073%国防科技创新研究院无人系统技术研究中心,北京 100091
AuthorAffiliation_xml – name: 国防科技大学智能科学学院,湖南长沙 410073%国防科技创新研究院无人系统技术研究中心,北京 100091
Author_FL XIAO Jun-hao
SHI Cheng-hao
LU Hui-min
DAI Bin
CHEN Xie-yuanli
GUO Rui-bin
Author_FL_xml – sequence: 1
  fullname: SHI Cheng-hao
– sequence: 2
  fullname: CHEN Xie-yuanli
– sequence: 3
  fullname: GUO Rui-bin
– sequence: 4
  fullname: XIAO Jun-hao
– sequence: 5
  fullname: DAI Bin
– sequence: 6
  fullname: LU Hui-min
Author_xml – sequence: 1
  fullname: 施成浩
– sequence: 2
  fullname: 陈谢沅澧
– sequence: 3
  fullname: 郭瑞斌
– sequence: 4
  fullname: 肖军浩
– sequence: 5
  fullname: 戴斌
– sequence: 6
  fullname: 卢惠民
BookMark eNotjz1Lw1AYRu9QwVq7-htcEt_33nxOUoJfUHCpc7nJzRU1pGAQiaPUKlbRuAi1LtJBUFDQRaX_xpu0_8KITg-c4RyeOVKJO3FIyAKCblsGLnmthk6BMp0BdawKqSIAaA6adJbUk2THB0AEaptYJcvT-wd1nRXHH9-f2fTkUp321M2FGr6WZPLSU2dPxaCrRgM1es9v-5Pxc_72mHev1PldMc6Kr-E8mZE8SsL6_9bI1upKy1vXmptrG16jqSUIrIxzdEWAIpQWEwZ1TGH4DBCQ-07gS-QoAorMFOgabmiElFGLSsZtCcINbJfVyOKf95DHksfb7d3OwX5cFtt7R1GUpunvYaSlkv0Axfxh6Q
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7641/CTA.2023.30286
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL A novel multiplex rotational attention-based network for point cloud registration and place recognition
EndPage 2197
ExternalDocumentID kzllyyy202312010
GroupedDBID -01
-0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
UY8
ID FETCH-LOGICAL-s1030-8a19dc1def63d4285d4b30101ab8cbf1a1dc2135d1949e4e23262f3a7f0d9c793
ISSN 1000-8152
IngestDate Thu May 29 04:08:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 闭环
deep learning
autonomous vehicles
地点识别
place recognition
loop closing
自动驾驶汽车
深度学习
3D registration
三维点云配准
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1030-8a19dc1def63d4285d4b30101ab8cbf1a1dc2135d1949e4e23262f3a7f0d9c793
PageCount 11
ParticipantIDs wanfang_journals_kzllyyy202312010
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 控制理论与应用
PublicationTitle_FL Control Theory & Applications
PublicationYear 2023
Publisher 国防科技大学智能科学学院,湖南长沙 410073%国防科技创新研究院无人系统技术研究中心,北京 100091
Publisher_xml – name: 国防科技大学智能科学学院,湖南长沙 410073%国防科技创新研究院无人系统技术研究中心,北京 100091
SSID ssib001102751
ssib002258297
ssib023646306
ssib057620041
ssib051372463
ssj0042201
ssib023167526
Score 2.3988905
Snippet ...
SourceID wanfang
SourceType Aggregation Database
StartPage 2187
Title 面向点云配准和地点识别的多头旋转注意力网络
URI https://d.wanfangdata.com.cn/periodical/kzllyyy202312010
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-lvehB_MRvKjinsjWZTCYzJ5nZzVLEerGF3iTZZBUsK9j20B6lreIHWi9CrRfpQVBQ0ItK_xvTj__C916S3bT0UL0ss5M37_3ex8682cyH41yPpS87bpI0Aq3ihlA6bSg_CRteN-2EWcDjNMMNzpN35MS0uDUTzAwNr9RWLS3MJ-OdpUP3lfyPV6EO_Iq7ZP_Bs32mUAFl8C98gofh80g-ZpFmusUMZ1HAtMu0x6KQKc6sZpFg1lCNZipgqoU0MPNXkog5U00qNJl1a60UM-2SRkHZ4iNtmBJYYwSWi4KFGsk0NLTYygKMJtZYnxmFBWii2sQHYBAfoCkQWgty62kx0UfMhKVcK0muS0gARoS6oEYKyYAGVRNEI0BcFTWESKIc5KeQASICvHpAAibT-BBBu2Q7IOFoIywgiDqtAnVaJMhjOioFqOaARKHldGEwSYrWJZb_p3D_wNoUMr0lpIBHIQCQYUgMYje4AqUwdGEUAGEkiddkC4XIbKvWqk_TL5CmoCAvHKMrmC10Gz4FO7ZL9bUeE7iUxWc8OCo4tLCtbE5BZNzSLUaTDysERaTA0yIqUYEQI8XaKhzaNc4SoxLC8BCGFAKGYhmggwk4RTHEMqpEzE1zDN8mFbezleMtHmygvGDfgFyc31V1PHzf8FpmZ1k12oaHpQGhFJgGNKfMOHp43Ick-sB565TBPVyanV1cXEQaj9NGzREehrjaY8S0Jm_fHcwrPHy7X8tzeYBb0qvvHI-TCAbzGLyUQfqD5QuB54e8du0EzPGxG-uvRROc0z3tfWsUp8uiGjf2K0FbC3vduHe_lgVPnXROlNPXUVP0RaecoaUHp53jtUNNzzg39z58zN-s7Tz5-efX2t7Kq_zpav72Zb7xDWp2v67mzz7vrC_nm-v55o_tdy92t75sf_-0vfw6f_5-Z2tt5_fGWWe6HU01JxrlNS2NObyjsKFiT6cdDzp16aeCqyAViY9HV8aJ6iRdL_bSDvf8IPW00JnIYA4nedePw66b6g7kB-ec4d6jXnbeGZVKwnzIFzBKuCKO_USrJPBSkeECmUzGF5xrpfr3ym547t5BJ148As0l59jgp3_ZGZ5_vJBdgcnFfHK1dP1fjNfO8w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E7%82%B9%E4%BA%91%E9%85%8D%E5%87%86%E5%92%8C%E5%9C%B0%E7%82%B9%E8%AF%86%E5%88%AB%E7%9A%84%E5%A4%9A%E5%A4%B4%E6%97%8B%E8%BD%AC%E6%B3%A8%E6%84%8F%E5%8A%9B%E7%BD%91%E7%BB%9C&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E6%96%BD%E6%88%90%E6%B5%A9&rft.au=%E9%99%88%E8%B0%A2%E6%B2%85%E6%BE%A7&rft.au=%E9%83%AD%E7%91%9E%E6%96%8C&rft.au=%E8%82%96%E5%86%9B%E6%B5%A9&rft.date=2023-12-01&rft.pub=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E6%99%BA%E8%83%BD%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8D%97%E9%95%BF%E6%B2%99+410073%25%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%88%9B%E6%96%B0%E7%A0%94%E7%A9%B6%E9%99%A2%E6%97%A0%E4%BA%BA%E7%B3%BB%E7%BB%9F%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100091&rft.issn=1000-8152&rft.volume=40&rft.issue=12&rft.spage=2187&rft.epage=2197&rft_id=info:doi/10.7641%2FCTA.2023.30286&rft.externalDocID=kzllyyy202312010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg