基于多时相土壤线一致性修正的土壤含水率反演

S152.7; 传统上依赖改进型垂直干旱指数(modified perpendicular dryness index,MPDI)进行土壤水分反演时每个时期的影像反演都需要依赖于地面实测数据进行校准.为降低土壤含水率反演对实测数据的依赖,该研究利用2020-2021年间的哨兵2号卫星数据,分析了近红外与红光波段特征空间中土壤线斜率的变化及其影响因素.并推导了土壤线斜率变化对土壤含水率反演的影响,揭示了 MPDI反演土壤含水率时每期都依赖实测数据校准的根本原因,最终提出了一种土壤线一致性修正方法.基于这种修正,该研究构建了一个能够多时相比较的再修正干旱指数(re-modified perpend...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 40; no. 14; pp. 73 - 80
Main Authors 徐冉, 文铭, 赵红莉, 郝震, 王镕, 贺君彦
Format Journal Article
LanguageChinese
Published 浙江省水利水电勘测设计院,杭州 310002%中国水利水电科学研究院,北京 100038 01.07.2024
水利部数字孪生流域重点实验室,北京 100038%中国水利水电科学研究院,北京 100038
中国水利水电科学研究院,北京 100038
大连理工大学建设工程学院,大连 116024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract S152.7; 传统上依赖改进型垂直干旱指数(modified perpendicular dryness index,MPDI)进行土壤水分反演时每个时期的影像反演都需要依赖于地面实测数据进行校准.为降低土壤含水率反演对实测数据的依赖,该研究利用2020-2021年间的哨兵2号卫星数据,分析了近红外与红光波段特征空间中土壤线斜率的变化及其影响因素.并推导了土壤线斜率变化对土壤含水率反演的影响,揭示了 MPDI反演土壤含水率时每期都依赖实测数据校准的根本原因,最终提出了一种土壤线一致性修正方法.基于这种修正,该研究构建了一个能够多时相比较的再修正干旱指数(re-modified perpendicular drought index,RPDI).结果表明,经过统一率定的RPDI与土壤含水率的回归方程在不同时相的影像上均适用,反演结果显示了良好的精度,率定集决定系数R2为0.49,无偏均方根误差为2.88%,验证集决定系数R2为0.54,无偏均方根误差为3.05%,与MPDI每期单独构建回归方程反演相比,RPDI基于统一方程反演与其保持了相近的精度水平,极大减少了在遥感土壤含水率估算中对地面实测数据的依赖,有效提升了遥感技术在土壤水分监测中的应用价值.研究可为光学遥感数据在大范围连续土壤水分反演领域的应用研究提供参考.
AbstractList S152.7; 传统上依赖改进型垂直干旱指数(modified perpendicular dryness index,MPDI)进行土壤水分反演时每个时期的影像反演都需要依赖于地面实测数据进行校准.为降低土壤含水率反演对实测数据的依赖,该研究利用2020-2021年间的哨兵2号卫星数据,分析了近红外与红光波段特征空间中土壤线斜率的变化及其影响因素.并推导了土壤线斜率变化对土壤含水率反演的影响,揭示了 MPDI反演土壤含水率时每期都依赖实测数据校准的根本原因,最终提出了一种土壤线一致性修正方法.基于这种修正,该研究构建了一个能够多时相比较的再修正干旱指数(re-modified perpendicular drought index,RPDI).结果表明,经过统一率定的RPDI与土壤含水率的回归方程在不同时相的影像上均适用,反演结果显示了良好的精度,率定集决定系数R2为0.49,无偏均方根误差为2.88%,验证集决定系数R2为0.54,无偏均方根误差为3.05%,与MPDI每期单独构建回归方程反演相比,RPDI基于统一方程反演与其保持了相近的精度水平,极大减少了在遥感土壤含水率估算中对地面实测数据的依赖,有效提升了遥感技术在土壤水分监测中的应用价值.研究可为光学遥感数据在大范围连续土壤水分反演领域的应用研究提供参考.
Abstract_FL Gaining large-scale,temporally continuous surface soil moisture information through remote sensing techniques is of significant importance for crop irrigation management and farmland drought early warning.The commonly used remote sensing soil moisture inversion method often utilizes the modified perpendicular dryness index(MPDI)in conjunction with ground-measured data to construct models.However,this method lacks universality,as each temporal phase of the image inversion requires the acquisition of corresponding ground-measured data for calibration,resulting in a high dependence on ground-measured data.To reduce the dependence on ground-measured data when estimating soil moisture using optical remote sensing data,this study firstly analyzed the feature space differences and the variation laws of soil line slopes using 54 temporal phases of Sentinel-2 T50SKH scenes from 2020 to 2021.The study also derived and explained the influence of soil line slope variations on soil moisture inversion,revealing the fundamental reason for the need for ground-measured data calibration for each period in the MPDI soil moisture inversion.Based on this,a multi-temporal soil line consistency correction method and a re-modified perpendicular drought index(RPDI)were proposed.Soil moisture inversion was conducted using RPDI,and the effectiveness was validated in the study area.The main conclusions are as follows:1)The analysis of the feature space of the Sentinel-2 satellite's continuous two-year scenes indicated that the feature spaces of most temporal phases were incomplete.Theoretically existing completely bare or extremely wet points may not be present in a single image,leading to long-term fluctuations in soil line slopes across different temporal phases.For the modified perpendicular dryness index(MPDI),the soil lines used for the calculation of MPDI in different temporal phases were different,which could only represent the relative dryness or wetness of each phase.This was the fundamental reason why ground-measured data calibration was required for each temporal phase when using MPDI for soil moisture inversion.2)Through theoretical derivation of the MPDI changes caused by soil line slope variations,it was found that the changes in the inversion equation's slope were mainly to offset the fluctuations in soil line slopes.For the same region,since soil texture did not change over time,if a stable soil line slope could be obtained,then the slope of the linear regression equation between soil moisture and MPDI would also remain stable,and calibration would not be necessary for each temporal phase.3)A soil line consistency correction method and RPDI were proposed.Since the calculation of this index was based on a unified theoretical soil line,it stabilized the regression relationship between RPDI and soil moisture.Validation results showed that a unified regression equation could be used between RPDI and ground-measured soil moisture(the unbiased root mean square error of the calibration set was 2.88%,R2 was 0.49,and the unbiased root mean square error of the validation set was 3.05%,R2 was 0.54).When applying the regression equation obtained from the calibration set to other temporal phases,it was not significantly different from the MPDI regression equations established for each phase separately in terms of R2 and unbiased root mean square error.This indicated that RPDI no longer depended on ground-measured data and could achieve direct comparison across different temporal phases,significantly reducing the dependence on ground-measured data for multi-temporal soil moisture estimation using optical remote sensing.In conclusion,this research offered a substantial contribution to the utilization of optical remote sensing data for large-scale,continuous soil moisture inversion.The introduced RPDI method not only simplified the process of soil moisture estimation but also fortified the resilience of soil moisture retrieval.Furthermore,it significantly boosted the efficiency and precision of soil moisture monitoring.As a result,it held great value for the implementation of sound irrigation strategies and the timely issuance of drought warnings.
Author 郝震
贺君彦
徐冉
文铭
王镕
赵红莉
AuthorAffiliation 中国水利水电科学研究院,北京 100038;水利部数字孪生流域重点实验室,北京 100038%中国水利水电科学研究院,北京 100038;浙江省水利水电勘测设计院,杭州 310002%中国水利水电科学研究院,北京 100038;大连理工大学建设工程学院,大连 116024
AuthorAffiliation_xml – name: 中国水利水电科学研究院,北京 100038;水利部数字孪生流域重点实验室,北京 100038%中国水利水电科学研究院,北京 100038;浙江省水利水电勘测设计院,杭州 310002%中国水利水电科学研究院,北京 100038;大连理工大学建设工程学院,大连 116024
Author_FL WEN Ming
XU Ran
HAO Zhen
HE Junyan
WANG Rong
ZHAO Hongli
Author_FL_xml – sequence: 1
  fullname: XU Ran
– sequence: 2
  fullname: WEN Ming
– sequence: 3
  fullname: ZHAO Hongli
– sequence: 4
  fullname: HAO Zhen
– sequence: 5
  fullname: WANG Rong
– sequence: 6
  fullname: HE Junyan
Author_xml – sequence: 1
  fullname: 徐冉
– sequence: 2
  fullname: 文铭
– sequence: 3
  fullname: 赵红莉
– sequence: 4
  fullname: 郝震
– sequence: 5
  fullname: 王镕
– sequence: 6
  fullname: 贺君彦
BookMark eNo9jz9LAzEchjNUsNZ-CgenO3_JJb1kEin-g0IXnUvuLiktkoJB1K2D0MnqIAhV6NBCB1EcipRD6Je53PkxVCpOL7wPvA_vBiqZnlEIbWHwMRYh2-n6HWuNjwGIV-NY-AQIBQKclVD5v11HVWs7ETAchAAUl9GuG6dZOnTTUf74UTwt3PPYTaZFuswW_a_BPO_PsuVb_jopRjcr5O5f8vd5MRy4u9v882ETrWl5ZlX1Lyvo9GD_pH7kNZqHx_W9hmcxEO5FESeRUiLmNNCcEV1LMDApqUh4ojiVhOpYCUqEjplmSkngikrAIdMBS3hQQdur3UtptDTtVrd3cW5-jC1z3Y6vot-7mALw4Bsw8mag
ClassificationCodes S152.7
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202402085
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Correction of the multi-temporal soil line consistency for the inversion of soil moisture content
EndPage 80
ExternalDocumentID nygcxb202414008
GrantInformation_xml – fundername: 国家重点研发计划
  funderid: (2021YFB3900602)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1028-bb82bee9c843f852f6d105aa49d8de84a24fce9429fc5f5eea08e4a0175f35d83
ISSN 1002-6819
IngestDate Thu May 29 04:08:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 14
Keywords amendment
feature space
soil moisture
RPDI
土壤线斜率
soil line slope
remote sensing
土壤含水率
遥感
MPDI
特征空间
修正
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1028-bb82bee9c843f852f6d105aa49d8de84a24fce9429fc5f5eea08e4a0175f35d83
PageCount 8
ParticipantIDs wanfang_journals_nygcxb202414008
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2024
Publisher 浙江省水利水电勘测设计院,杭州 310002%中国水利水电科学研究院,北京 100038
水利部数字孪生流域重点实验室,北京 100038%中国水利水电科学研究院,北京 100038
中国水利水电科学研究院,北京 100038
大连理工大学建设工程学院,大连 116024
Publisher_xml – name: 中国水利水电科学研究院,北京 100038
– name: 水利部数字孪生流域重点实验室,北京 100038%中国水利水电科学研究院,北京 100038
– name: 浙江省水利水电勘测设计院,杭州 310002%中国水利水电科学研究院,北京 100038
– name: 大连理工大学建设工程学院,大连 116024
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4382865
Snippet S152.7; 传统上依赖改进型垂直干旱指数(modified perpendicular dryness...
SourceID wanfang
SourceType Aggregation Database
StartPage 73
Title 基于多时相土壤线一致性修正的土壤含水率反演
URI https://d.wanfangdata.com.cn/periodical/nygcxb202414008
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsAkbET2IT3wT0D6FjfPonuk-Sc_OLEHQUwK5hZmdmXhaIQ_QnHIQcjJ6EIQo5JCAB1E8BAlByM9kd_0Mq2p6dycS8QFLM1vVVV2P7qnqme5pxu47HSdXEJmbWanDpnDToKlzGO6iyFNIZ13l0KF9j58Es_Pi0YJcmGicqa1aWlvNZjrrp-4r-R-vAgz8irtk_8GzI6YAgGvwL5TgYSj_ysc8kVy3eWR4IrBUCUKM4BogAdchjwKehFxHPFJUuYX1sY6P1QAFVFGbyBUuekigBKBAcvhrQkK1uUkQYmIkRIbQljiNIUCAKsLKkUN8QpQKeAJKtbmKCQVUop4WEzZAbpUkKL_kUciNRA4GpIqoFRAgINkMoIadheom2HLFRukxBpgG1LzmGkSMxxjFI4m_ygjGI92TE8SaK5_rmIhb3IZs-4jEE6PltFWnJsVAf00XLtklJDq3Zg4QUHGjTxhIC5JDopJaWT6osEK7g2bVhXFJEI2yei1SLUaLVJbSyTS9RQGctFascOj8-O8kCNHh2q1ZGiAOYvFCU2-qSwCsWtjLqt5nWtMuvQOuBTqMhIGy4cpGwurDWcMRL2pxrTpuZpghOafHXh1KCr7YwMyogRn0CB0FO045RgtBuy-WOs8zrAETfdyzP-nBdM9rsEkTxVF7nNi7-OxiFHk8_H5DMJ4oS9fHYxpGi7twaYOkdQ5WiLPs3lDEB78XkDbudcu0u1TLMecusgt2cjhlqpF-iU2sP73MzpulZfuBnOIKe9jbOTw-3OrtbffffRu8P-h92Ont7g0Oj44PNn5s7vc3Ph4ffel_3h1sv6xQvTef-l_3B1ubvdev-t_fXmXz7WSuNdu0h6A0VzD3b2aZ8rKi0B0l_FJJrwzgVirTVOhc5YUSqSfKTqEhrSw7spRFkTqqECkEWln6Mlf-NdboPusW19lUpmWehnDPdn0hVJhnQquidIDIzwIvD26wKav-or3JrSz-4qCbf65yi50bj8HbrLG6vFbcgcR9NbtrvfoTGdKuhQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E6%97%B6%E7%9B%B8%E5%9C%9F%E5%A3%A4%E7%BA%BF%E4%B8%80%E8%87%B4%E6%80%A7%E4%BF%AE%E6%AD%A3%E7%9A%84%E5%9C%9F%E5%A3%A4%E5%90%AB%E6%B0%B4%E7%8E%87%E5%8F%8D%E6%BC%94&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BE%90%E5%86%89&rft.au=%E6%96%87%E9%93%AD&rft.au=%E8%B5%B5%E7%BA%A2%E8%8E%89&rft.au=%E9%83%9D%E9%9C%87&rft.date=2024-07-01&rft.pub=%E6%B5%99%E6%B1%9F%E7%9C%81%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E5%8B%98%E6%B5%8B%E8%AE%BE%E8%AE%A1%E9%99%A2%2C%E6%9D%AD%E5%B7%9E+310002%25%E4%B8%AD%E5%9B%BD%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100038&rft.issn=1002-6819&rft.volume=40&rft.issue=14&rft.spage=73&rft.epage=80&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202402085&rft.externalDocID=nygcxb202414008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg