基于EEMD-CNN-LSTM的新型综合模型在滑坡位移预测中的应用

P642.22%P232; 滑坡位移预测是滑坡稳定性评价的重要环节.尽管基于深度学习范式的时间序列方法预测滑坡位移取得了一定的成果,但由于滑坡位移数据的非平稳性、周期性和趋势性变化特征,导致当前时间序列模型的滑坡位移的多变量预测容易过拟合.为解决这一问题,针对滑坡位移数据的波动性和由周期项与趋势项位移叠加组成的特性,提出一种基于孤立森林(Isolation Forest,IF)异常检测、集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆神经网络(...

Full description

Saved in:
Bibliographic Details
Published in地质力学学报 Vol. 30; no. 4; pp. 633 - 646
Main Authors 刘航源, 陈伟涛, 李远耀, 徐战亚, 李显巨
Format Journal Article
LanguageChinese
Published 中国地质大学(武汉)地质探测与评估教育部重点实验室,湖北武汉 430074%中国地质大学(武汉)计算机学院,湖北武汉 430074%中国地质大学(武汉)地质调查研究院,湖北武汉 430074%中国地质大学(武汉)地理与信息工程学院,湖北武汉 430074 01.08.2024
Subjects
Online AccessGet full text
ISSN1006-6616
DOI10.12090/j.issn.1006-6616.2023145

Cover

Abstract P642.22%P232; 滑坡位移预测是滑坡稳定性评价的重要环节.尽管基于深度学习范式的时间序列方法预测滑坡位移取得了一定的成果,但由于滑坡位移数据的非平稳性、周期性和趋势性变化特征,导致当前时间序列模型的滑坡位移的多变量预测容易过拟合.为解决这一问题,针对滑坡位移数据的波动性和由周期项与趋势项位移叠加组成的特性,提出一种基于孤立森林(Isolation Forest,IF)异常检测、集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM)相结合的滑坡位移预测模型.选择三峡库区以降雨为影响因子的阶跃型白家包滑坡为研究对象,引入IF算法对滑坡原始位移数据进行异常检测,使用EEMD方法提取滑坡趋势项和周期项位移,通过CNN捕捉局部周期项和趋势模式,并基于LSTM模型预测总体位移.结果表明,EEMD-CNN-LSTM在预测降雨情况时滑坡总体位移的均方根误差(RMSE)、平均绝对误差(MAE)、评价绝对百分比误差(MAPE)和决定系数(R2)4种指标分别为 0.4190、0.3139、0.2379和 0.9997,前 3种精度评价指标较现有模型分别提升 32.3%、25.1%、7.3%.相较于传统的LSTM模型、随机森林方法和EEMD-LSTM方法,EEMD-CNN-LSTM模型在有、无降雨这一外部影响因素下具有显著优势,能够较大地降低过拟合,提高预测的准确性.
AbstractList P642.22%P232; 滑坡位移预测是滑坡稳定性评价的重要环节.尽管基于深度学习范式的时间序列方法预测滑坡位移取得了一定的成果,但由于滑坡位移数据的非平稳性、周期性和趋势性变化特征,导致当前时间序列模型的滑坡位移的多变量预测容易过拟合.为解决这一问题,针对滑坡位移数据的波动性和由周期项与趋势项位移叠加组成的特性,提出一种基于孤立森林(Isolation Forest,IF)异常检测、集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM)相结合的滑坡位移预测模型.选择三峡库区以降雨为影响因子的阶跃型白家包滑坡为研究对象,引入IF算法对滑坡原始位移数据进行异常检测,使用EEMD方法提取滑坡趋势项和周期项位移,通过CNN捕捉局部周期项和趋势模式,并基于LSTM模型预测总体位移.结果表明,EEMD-CNN-LSTM在预测降雨情况时滑坡总体位移的均方根误差(RMSE)、平均绝对误差(MAE)、评价绝对百分比误差(MAPE)和决定系数(R2)4种指标分别为 0.4190、0.3139、0.2379和 0.9997,前 3种精度评价指标较现有模型分别提升 32.3%、25.1%、7.3%.相较于传统的LSTM模型、随机森林方法和EEMD-LSTM方法,EEMD-CNN-LSTM模型在有、无降雨这一外部影响因素下具有显著优势,能够较大地降低过拟合,提高预测的准确性.
Abstract_FL [Objective]Landslide-displacement prediction is critical when evaluating landslide stability.Despite the achievements of time-series methods based on deep-learning paradigms in predicting landslide displacement,the nonstationary,periodic,and trending characteristics of landslide displacement data cause multivariate predictions of current time-series models to easily overfit.Existing studies primarily focus on improving single models,whereas systematic studies pertaining to multimodel integration methods are scarce.This study aims to develop an integrated model that addresses these challenges and improves prediction accuracy.[Methods]Considering the volatility of landslide-displacement data and the combined characteristics of their periodic and trending displacement components,a landslide-displacement prediction model combining isolation forest(IF)anomaly detection,ensemble empirical mode decomposition(EEMD),convolutional neural networks(CNNs),and long short-term memory(LSTM)neural networks is proposed.The stepped Baijiabao landslide in the Three Gorges Reservoir area,which is affected by rainfall,is investigated in this study.First,the IF algorithm is introduced to detect anomalies in the original landslide-displacement data.This enables outliers,which can distort the prediction results,to be identified and excluded.Subsequently,EEMD is adopted to decompose the displacement data into intrinsic mode functions(IMFs),which represent the underlying periodic and trend components.This decomposition allows one to analyze the inherent characteristics of the data more comprehensively.Next,a CNN is employed to capture local periodic and trend patterns within the IMFs.CNNs are particularly effective in recognizing spatial patterns and features,thus rendering them suitable for identifying complex patterns in the displacement data.Finally,the overall displacement is predicted using the LSTM model,which is suitable for accommodating sequential data and capturing long-term dependencies.These techniques are integrated to leverage their respective strengths,thereby improving the prediction accuracy.[Result]The results indicate that the root-mean-square error(RMSE),mean absolute error(MAE),absolute percentage error in evaluation(MAPE),and determination coefficient(R2)indices of the EEMD-CNN-LSTM model for predicting the overall landslide displacement under rainfall conditions are 0.4190,0.3139,0.2379,and 0.9997,respectively,which signify improvements in the accuracy of the first three evaluation indices by 32.3%,25.1%,and 7.3%,respectively,compared with those of existing models.This significant improvement demonstrates the model's robustness in accommodating the complexities of landslide-displacement data under varying conditions.For predictions without rainfall,the RMSE,MAE,MAPE,and R2 indices are 0.4302,0.2908,0.2431,and 0.9996,respectively,which signify improvements in the accuracy of the first three indices by 31.2%,31.7%,and 8.7%,respectively,compared with those of existing models.These results highlight the model's high generalizability across different scenarios,as it can maintain high prediction accuracies regardless of external influencing factors such as rainfall.Compared with conventional LSTM,random forest,and EEMD-LSTM models,the EEMD-CNN-LSTM model offers significant advantages under the influence of rainfall and without rainfall,thus significantly reducing overfitting and improving the prediction accuracy.The hybrid approach effectively captures the intricate patterns in the data,which cannot be achieved by single models.[Conclusion]In summary,the multimodel integration method based on IF anomaly detection,EEMD decomposition,local-feature capturing by the CNN,and overall prediction by LSTM significantly improves the accuracy of landslide-displacement prediction,particularly under the influence of rainfall.The integrated model not only addresses the overfitting issues typically encountered in time-series prediction models but also enhances the model's robustness and reliability.The combination of IF for anomaly detection ensures that outliers do not skew the prediction results,whereas EEMD facilitates the decomposition of data into meaningful components.The CNN's ability to capture local patterns,coupled with the LSTM's strength in modeling long-term dependencies,enables the establishment of a comprehensive framework that can effectively accommodate the complexities of landslide displacement data.[Significance]This study provides an effective multimodel integration method for landslide-displacement prediction,which addresses the overfitting issues in existing models as well as offers substantial scientific significance and practical value.The proposed model's ability to accurately predict landslide displacement under varying conditions is extremely beneficial to the stability evaluation of landslide-prone areas,thereby contributing to disaster prevention and mitigation efforts.The innovation is based on the systematic integration of anomaly detection,data decomposition,and advanced neural-network techniques,which results in a robust framework that outperforms conventional methods.The findings of this study are applicable to real-world scenarios,thereby enhancing the accuracy and reliability of landslide monitoring systems and supporting informed decision-making in hazard management and infrastructure development.
Author 徐战亚
李显巨
刘航源
陈伟涛
李远耀
AuthorAffiliation 中国地质大学(武汉)地质探测与评估教育部重点实验室,湖北武汉 430074%中国地质大学(武汉)计算机学院,湖北武汉 430074%中国地质大学(武汉)地质调查研究院,湖北武汉 430074%中国地质大学(武汉)地理与信息工程学院,湖北武汉 430074
AuthorAffiliation_xml – name: 中国地质大学(武汉)地质探测与评估教育部重点实验室,湖北武汉 430074%中国地质大学(武汉)计算机学院,湖北武汉 430074%中国地质大学(武汉)地质调查研究院,湖北武汉 430074%中国地质大学(武汉)地理与信息工程学院,湖北武汉 430074
Author_FL LI Yuanyao
LI Xianju
XU Zhanya
CHEN Weitao
LIU Hangyuan
Author_FL_xml – sequence: 1
  fullname: LIU Hangyuan
– sequence: 2
  fullname: CHEN Weitao
– sequence: 3
  fullname: LI Yuanyao
– sequence: 4
  fullname: XU Zhanya
– sequence: 5
  fullname: LI Xianju
Author_xml – sequence: 1
  fullname: 刘航源
– sequence: 2
  fullname: 陈伟涛
– sequence: 3
  fullname: 李远耀
– sequence: 4
  fullname: 徐战亚
– sequence: 5
  fullname: 李显巨
BookMark eNo9TztLw1AUvkMFa-2PcHJKPOcm995klBi1kNbBOpebl7SUFAxice4gFEWhOIgP6mIWwUWQRP9NHvgvDCgu34vD-fjWSCOaRAEhGwgqUjBha6QO4zhSEYArnCNXKVANddYgzf9slbTjeOgCQ00gUqNJOsVTmqdXtt3dUaxeT3EO-93qblbevhWP8yr7LK4vymRZ6-I-KbOb4mGZf11WL9n386x8n-cfr_VxkS6qRbJOVkI5joP2H7fI0a7dt_YV52CvY207SoxADYUbOjMZolmj7oKQ6DPPQ9PVZOgHknIpQgSNU3CF5wvgOhhomrXzmWRSaC2y-fv3TEahjI4Ho8npSVQ3Dvzz8XTq1rN10AEM7Qf6L2Xt
ClassificationCodes P642.22%P232
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12090/j.issn.1006-6616.2023145
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Application of integrated model based on EEMD-CNN-LSTM for landslide-displacement prediction
EndPage 646
ExternalDocumentID dzlxxb202404008
GroupedDBID -01
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1028-6845951195954b07a1d5cc19b3afdea26a7f103620b7cd7064081990b7d5a5a73
ISSN 1006-6616
IngestDate Thu May 29 04:00:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords time-series model
deep learning
滑坡位移预测
卷积神经网络
集合经验模态分解
深度学习
时间序列模型
landslide-displacement prediction
convolutional neural networks
ensemble empirical mode decomposition
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1028-6845951195954b07a1d5cc19b3afdea26a7f103620b7cd7064081990b7d5a5a73
PageCount 14
ParticipantIDs wanfang_journals_dzlxxb202404008
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle 地质力学学报
PublicationTitle_FL Journal of Geomechanics
PublicationYear 2024
Publisher 中国地质大学(武汉)地质探测与评估教育部重点实验室,湖北武汉 430074%中国地质大学(武汉)计算机学院,湖北武汉 430074%中国地质大学(武汉)地质调查研究院,湖北武汉 430074%中国地质大学(武汉)地理与信息工程学院,湖北武汉 430074
Publisher_xml – name: 中国地质大学(武汉)地质探测与评估教育部重点实验室,湖北武汉 430074%中国地质大学(武汉)计算机学院,湖北武汉 430074%中国地质大学(武汉)地质调查研究院,湖北武汉 430074%中国地质大学(武汉)地理与信息工程学院,湖北武汉 430074
SSID ssib051371128
ssib000862194
ssj0002912137
ssib036433826
ssib000269674
ssib002263299
ssib012290207
Score 2.3617294
Snippet P642.22%P232;...
SourceID wanfang
SourceType Aggregation Database
StartPage 633
Title 基于EEMD-CNN-LSTM的新型综合模型在滑坡位移预测中的应用
URI https://d.wanfangdata.com.cn/periodical/dzlxxb202404008
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR1Na9RANNQq4kUUFb-p4JxkazKZmcwcJ7tZqthebLG3kmR3qyAr2BZKzz0IRVEoHsQP6sVeBC-CtPpvurv4L3zvJbs7_RA_QS_DZObN-07mzctk4nlX8wgnRZlWhNFQwJxdyfADn0z7eahwPZbSaZ9TamJG3JyVsyNH7ji7lpYWs_F85cDvSn7HqtAGdsWvZH_BsgOk0AB1sC-UYGEof8rGLJHM1FlsWSKw1LBym6xVqlNTlVu3pydZEjEDrYIlihnFYp8GJEzH2BXHLK5Si8-0RhirmQ0cGKhUsRG6ANgUXTWCAXo1pmuIxxKqxDDLS1qxpOEAAwhrDhsSuTSCWgRgdkPjkhwyqVksiC7gAXjiBPBY5VQUdlnZdxiC1cxoHA0Va4kRGO0PQQwzhkQVKDloDkFANfEQRKGAOiEe6sgPogP9-C6hOEGdIQsFRVK-sW4GhYvB_r3C5x11SBQprh0ssBWo0IGcvDBMX-Y4YNowbg4aq5BvsMEeAxTC2DoZgASPiXcjURsoHmcxR-XokPBAJSpNi11EyyboE2hjMGS1bAFWeZXIGXQvtABoNdrP8DURYhDJuPzbWtDER0BumJS0EZt1PIWsDnr517zuH6vxErSOTNfBmUkMv7xBrEHf_P-4j-h5oRzvEniroBHAAwP0NLxFor48unyU_Ik1nNAJc5MQ7Ss3tirfud5zE4cUKKni-Jsy5lbFa4h94Rz3jU_xHFIYH1AY53hqZXEM7Z7T8hsr95eXM7zLMTrRh7zDPIqK_Ttlrq3YXqHMrkPMtOLBrjyXCvkwTxPgTzH4ME8Gk1gYOnkZGYQRrFv1ILnPDZ6UST_26vN81LvSl-j69-ShD0fbrbQ976xxpk94x8vkxJgtZpqT3sjK3VPejc6brZ2tJ7tmlt6L1e7zD53Xa73tz52nj7qbG1DvvNzsbj_rvNrY-fK4927769vV7se1nU_vAbiztd5b3zztzdST6epEpfwBT2UB150VpYU0uNEESpH5URo0ZJ4HJgvTVqOZcpVGrQCXQH4W5Y0IN4XAAtPAVUOmMo3CM95o-0G7edYbS7XReauZ-80U1ux-kKX4gzxhWqKhAGXznDdWij5XTrALc3tsef7HIBe8Y8MH_EVvdPHhUvMSLBoXs8vkAN8AsjYuVA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EEEMD-CNN-LSTM%E7%9A%84%E6%96%B0%E5%9E%8B%E7%BB%BC%E5%90%88%E6%A8%A1%E5%9E%8B%E5%9C%A8%E6%BB%91%E5%9D%A1%E4%BD%8D%E7%A7%BB%E9%A2%84%E6%B5%8B%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E5%9C%B0%E8%B4%A8%E5%8A%9B%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E8%88%AA%E6%BA%90&rft.au=%E9%99%88%E4%BC%9F%E6%B6%9B&rft.au=%E6%9D%8E%E8%BF%9C%E8%80%80&rft.au=%E5%BE%90%E6%88%98%E4%BA%9A&rft.date=2024-08-01&rft.pub=%E4%B8%AD%E5%9B%BD%E5%9C%B0%E8%B4%A8%E5%A4%A7%E5%AD%A6%28%E6%AD%A6%E6%B1%89%29%E5%9C%B0%E8%B4%A8%E6%8E%A2%E6%B5%8B%E4%B8%8E%E8%AF%84%E4%BC%B0%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430074%25%E4%B8%AD%E5%9B%BD%E5%9C%B0%E8%B4%A8%E5%A4%A7%E5%AD%A6%28%E6%AD%A6%E6%B1%89%29%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430074%25%E4%B8%AD%E5%9B%BD%E5%9C%B0%E8%B4%A8%E5%A4%A7%E5%AD%A6%28%E6%AD%A6%E6%B1%89%29%E5%9C%B0%E8%B4%A8%E8%B0%83%E6%9F%A5%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430074%25%E4%B8%AD%E5%9B%BD%E5%9C%B0%E8%B4%A8%E5%A4%A7%E5%AD%A6%28%E6%AD%A6%E6%B1%89%29%E5%9C%B0%E7%90%86%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430074&rft.issn=1006-6616&rft.volume=30&rft.issue=4&rft.spage=633&rft.epage=646&rft_id=info:doi/10.12090%2Fj.issn.1006-6616.2023145&rft.externalDocID=dzlxxb202404008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzlxxb%2Fdzlxxb.jpg