构建植被区分阴影消除植被指数提取山地植被信息

TP702%TP79; 山地植被信息在气候变化研究和生态环境保护等方面发挥着重要作用,遥感技术能够快速获取山地植被信息,但是存在山地地形阴影的影响以及山地植被信息混淆问题.该文以山地植被为研究对象,基于Landsat卫星遥感影像多光谱数据,分析山地植被的主要特点,借鉴阴影消除植被指数(shadow eliminated vegetation index,SEVI)的构造原理及形式,提出了一种适用于山地植被覆盖遥感监测的植被指数算法—植被区分阴影消除植被指数(vegetation distinguished and shadow eliminated vegetation index,VDSEV...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 35; no. 20; pp. 135 - 144
Main Authors 柳晓农, 江洪, 汪小钦
Format Journal Article
LanguageChinese
Published 福州大学空间数据挖掘与信息共享教育部重点实验室,福州,350108 15.10.2019
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2019.20.017

Cover

Abstract TP702%TP79; 山地植被信息在气候变化研究和生态环境保护等方面发挥着重要作用,遥感技术能够快速获取山地植被信息,但是存在山地地形阴影的影响以及山地植被信息混淆问题.该文以山地植被为研究对象,基于Landsat卫星遥感影像多光谱数据,分析山地植被的主要特点,借鉴阴影消除植被指数(shadow eliminated vegetation index,SEVI)的构造原理及形式,提出了一种适用于山地植被覆盖遥感监测的植被指数算法—植被区分阴影消除植被指数(vegetation distinguished and shadow eliminated vegetation index,VDSEVI).研究结果表明:相对于已有的其他植被指数,VDSEVI较好地消除了地形阴影的影响;VDSEVI 的信息量大,植被覆盖的识别能力较强,较好地解决了植被信息混淆问题,能够更好地反映山地植被覆盖情况.不同土地覆盖类型的VDSEVI存在显著差异;阴影稀疏林地和相邻非阴影稀疏林地的相对误差较小,为3.428%;各土地覆盖类型样本VDSEVI标准差均小于0.06;植被覆盖样本VDSEVI与太阳入射角余弦值(cosi)的相关系数为?0.800.为验证VDSEVI在其他地区的适用性,将VDSEVI应用于内蒙古阿尔山和福州市闽侯县,结果表明VDSEVI同样适用.新疆那拉提、内蒙古阿尔山和福州市闽侯县3个区域基于VDSEVI阈值法的植被信息提取总体精度分别为84.136%、87.339%、86.709%,Kappa系数分别为0.799、0.788、0.791.
AbstractList TP702%TP79; 山地植被信息在气候变化研究和生态环境保护等方面发挥着重要作用,遥感技术能够快速获取山地植被信息,但是存在山地地形阴影的影响以及山地植被信息混淆问题.该文以山地植被为研究对象,基于Landsat卫星遥感影像多光谱数据,分析山地植被的主要特点,借鉴阴影消除植被指数(shadow eliminated vegetation index,SEVI)的构造原理及形式,提出了一种适用于山地植被覆盖遥感监测的植被指数算法—植被区分阴影消除植被指数(vegetation distinguished and shadow eliminated vegetation index,VDSEVI).研究结果表明:相对于已有的其他植被指数,VDSEVI较好地消除了地形阴影的影响;VDSEVI 的信息量大,植被覆盖的识别能力较强,较好地解决了植被信息混淆问题,能够更好地反映山地植被覆盖情况.不同土地覆盖类型的VDSEVI存在显著差异;阴影稀疏林地和相邻非阴影稀疏林地的相对误差较小,为3.428%;各土地覆盖类型样本VDSEVI标准差均小于0.06;植被覆盖样本VDSEVI与太阳入射角余弦值(cosi)的相关系数为?0.800.为验证VDSEVI在其他地区的适用性,将VDSEVI应用于内蒙古阿尔山和福州市闽侯县,结果表明VDSEVI同样适用.新疆那拉提、内蒙古阿尔山和福州市闽侯县3个区域基于VDSEVI阈值法的植被信息提取总体精度分别为84.136%、87.339%、86.709%,Kappa系数分别为0.799、0.788、0.791.
Abstract_FL Mountain vegetation information plays an important role in climate change research and ecological environment protection. Remote sensing technology can quickly acquire mountain vegetation information, but there are the influence of mountain terrain shadows and mountain vegetation information confusion. This paper took mountain vegetation as the research object and analyzed the main characteristics of mountain vegetation based on the multi-spectral data of Landsat satellite remote sensing image. Learn from the structural principle and form of the shadow elimination vegetation index (SEVI), a vegetation index algorithm - Vegetation distinguished and shadow eliminated vegetation index (VDSEVI) for mountain vegetation cover remote sensing monitoring was proposed. Samples for comparison and analysis were selected according to the main land cover types in the study area. The accuracy, validity and practicability of mountain vegetation information extraction with different vegetation indices were compared and analyzed. There are certain criteria which vegetation index of the same vegetation cover in shady and sunny should be equivalent, and the vegetation index values of different vegetation cover should be differentiated and compliance with actual vegetation coverage. Comparative analysis methods for different vegetation indices include: the images of different vegetation indices were directly compared; the vegetation index values of the same vegetation in shady and sunny cover were compared; the vegetation index values of the different land cover types were compared; the correlation between vegetation index and cosi was analyzed. The VDSEVI was compared with the ratio vegetation index(RVI), the normalized vegetation index(NDVI), the enhanced vegetation index(EVI2) and SEVI. There was a significant difference in the mean value of VDSEVI among different land cover types. The relative error of the sparse woodland in shady and sunny was small, which was 3.428%. The standard deviation of each land cover type sample was less than 0.060.The shady area of the Nalati in Xinjiang was dominated by woodland, and the sunny area was dominated by grassland. Therefore, the vegetation index and cosi should be negatively correlated. The correlation coefficient between VDSEVI and cosi is -0.800.The data results showed that compared with RVI, NDVI, EVI2 and SEVI, VDSEVI eliminated the influence of terrain shadows, and had a large amount of information and strong recognition of vegetation coverage. The problem of vegetation information confusion was solved, and the actual situation of mountain vegetation cover was reflected. To verify the suitability of VDSEVI in other regions, VDSEVI was applied to the area of Arxan in Inner Mongolia and Minhou County in Fuzhou City. The results showed that VDSEVI was equally effective. Vegetation information was extracted based on VDSEVI threshold method in Nalati in Xinjiang, Arxan in Inner Mongolia and Minhou County in Fuzhou City. The threshold was calculated by the VDSEVI value of samples from comparative analysis of various land cover types. Finally, the results of vegetation information extraction were evaluated by validating samples. The overall accuracy of vegetation information extraction in the three regions was 84.136%, 87.339%, 86.709% respectively, and the Kappa coefficients were 0.799, 0.788 and 0.791 respectively.
Author 江洪
柳晓农
汪小钦
AuthorAffiliation 福州大学空间数据挖掘与信息共享教育部重点实验室,福州,350108
AuthorAffiliation_xml – name: 福州大学空间数据挖掘与信息共享教育部重点实验室,福州,350108
Author_FL Jiang Hong
Liu Xiaonong
Wang Xiaoqin
Author_FL_xml – sequence: 1
  fullname: Liu Xiaonong
– sequence: 2
  fullname: Jiang Hong
– sequence: 3
  fullname: Wang Xiaoqin
Author_xml – sequence: 1
  fullname: 柳晓农
– sequence: 2
  fullname: 江洪
– sequence: 3
  fullname: 汪小钦
BookMark eNo9jz9LAzEchjNUsNZ-DHG685ekd0lGLf6DgovOJcndlRZJwSDqKIh2qLSLoiCC0s3BHohDRfwyJthvYfXE5X3hGd6XZwGVTNekCC1hCDEWLFrphG1rTYgBSBBzLEICvxECZiVU_ufzqGptW0GEKQOo4TJa8_dn7m3iR5dfj0-uP3G98-nNi3vP_WtvejsquO9f-KuxHwzd4NrlubsbF_zz48GfPi-iuUzu27T61xW0t7G-W98KGjub2_XVRmAxEBbEgicUpCJU8UxBKoBGnNA40RkVkuq4pmuKJFzphEvAMpYMM9CCKCxTSQWtoOVi90iaTJpWs9M9PDCzx6Y5aelj9eNMYGZMvwEZJWhK
ClassificationCodes TP702%TP79
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2019.20.017
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Extraction of mountain vegetation information based on vegetation distinguished and shadow eliminated vegetation index
EndPage 144
ExternalDocumentID nygcxb201920017
GrantInformation_xml – fundername: 国家重点研发计划项目; 福建省自然科学基金项目
  funderid: (2017YFB0504203); (2017J01658)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1027-698d30ab23b8fb0e90358236dcf39a3c64c4b2d8bcd8a01a6a7170c92b1aea393
ISSN 1002-6819
IngestDate Thu May 29 04:08:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 20
Keywords 信息提取
information extraction
植被
山地
植被区分阴影消除植被指数(VDSEVI)
mountainous region
vegetation distinguished and shadow eliminated vegetation index (VDSEVI)
remote sensing
vegetation
遥感
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1027-698d30ab23b8fb0e90358236dcf39a3c64c4b2d8bcd8a01a6a7170c92b1aea393
PageCount 10
ParticipantIDs wanfang_journals_nygcxb201920017
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2019
Publisher 福州大学空间数据挖掘与信息共享教育部重点实验室,福州,350108
Publisher_xml – name: 福州大学空间数据挖掘与信息共享教育部重点实验室,福州,350108
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.2649515
Snippet TP702%TP79; 山地植被信息在气候变化研究和生态环境保护等方面发挥着重要作用,遥感技术能够快速获取山地植被信息,但是存在山地地形阴影的影响以及山地植被信息混淆问题.该文以山地植被为研究对象,基于Landsat卫星遥感影像多光谱数据,分析山地植被的主要特点,借鉴阴影消除植被指数(shadow...
SourceID wanfang
SourceType Aggregation Database
StartPage 135
Title 构建植被区分阴影消除植被指数提取山地植被信息
URI https://d.wanfangdata.com.cn/periodical/nygcxb201920017
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG7yANGD-MQ3OdjHjT09M_049uzOEgQ9JZBb6JmdjacVkg1oboJoDpF4URREUHLzYALiISL-GWcw_8Kq7slm3ARfl6bpqq76qmpmq2e2uoeQmzy3YdQLolZRxKoV2Vi0lJZZK4ikgPxvYcWN-53v3BVzC9HtxXhxYrJsVC2tDbPZfP3YfSX_E1UYg7jiLtl_iOxIKAxAH-ILLUQY2r-KMU0F1SlVEU1jmiQ0MThiYHnYoamihlOTIEm1HQk6iipBU021oomf1aFJgLMSgVQkaZRwjByBcpR0SmEicyNdqpmTDB3hBAZOYEx1u-YZlxPRpEuNU6oCan4pLHSiBM5FNkW1g51IamKaQgv4nUWmQ41wEgyQDq4aB61Lk9B1wJRwJK_JAviACzsRNWaMYrxGhhahNwCzaL4aCTTmFL851F3MDpfzhEcKAUGAIFo2kAKPdkEAkdL5vulF4ElrB2tvVooh8j6A_hGfObucs5Fk6viAQLAaPK04TTjqUiH6DDvSBUE6knbAUgdVo8Wg148AbN4-xiLexr-GWTOHYZITqs5EdZLzZ8LUNzNnjZQV1CS_-gn8aZxHE6uWscusqGJ2pAJrI7GZZX4H7tjZ5YOHy_mDDHmwdE9OkmkuJVZTTJukk3QP1-0BvpoYJRaOxzOIw-fgOAjxKwyj2i2sXIhdGUMN4wShByBv_Q6i25k36NvBcmMROX-GnK6f_maMv5XPkon1e-fIKbO8Up-AU5wnSfX2cfllr9p-9uP9h3Jzr9x4sv_qU_l1t_q8sf96249Xm0-rFzvV1vNy62W5u1u-2fHj37-9qx59vEAWuul8e65Vf-iktQrre9kSWvVCZjMeZqqfsUIz3L8eil7eD7UNcxHlUcZ7Kst7yrLACisDyXLNs8AWNtThRTI1uD8oLpEZEfY443lhmepHOcuy0ApRcGVjpSNr2WUyU3tgqf4hW10ai9KVP7NcJScP77drZGq4slZch8X5MLtRh_Yn4xWpNQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%9E%84%E5%BB%BA%E6%A4%8D%E8%A2%AB%E5%8C%BA%E5%88%86%E9%98%B4%E5%BD%B1%E6%B6%88%E9%99%A4%E6%A4%8D%E8%A2%AB%E6%8C%87%E6%95%B0%E6%8F%90%E5%8F%96%E5%B1%B1%E5%9C%B0%E6%A4%8D%E8%A2%AB%E4%BF%A1%E6%81%AF&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9F%B3%E6%99%93%E5%86%9C&rft.au=%E6%B1%9F%E6%B4%AA&rft.au=%E6%B1%AA%E5%B0%8F%E9%92%A6&rft.date=2019-10-15&rft.pub=%E7%A6%8F%E5%B7%9E%E5%A4%A7%E5%AD%A6%E7%A9%BA%E9%97%B4%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%85%B1%E4%BA%AB%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E7%A6%8F%E5%B7%9E%2C350108&rft.issn=1002-6819&rft.volume=35&rft.issue=20&rft.spage=135&rft.epage=144&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2019.20.017&rft.externalDocID=nygcxb201920017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg