基于无人机RGB影像的玉米种植信息高精度提取方法
S127; 为探究易获取且成本低的超高分辨率无人机(Unmanned Aerial Vehicle,UAV)航拍"红-绿-蓝"(Red-Green-Blue,RGB)彩色影像提取作物种植信息的方法,该研究选取植被指数、"色度-色饱和度-亮度"(Hue-Saturation-Intensity,HSI)色彩特征和纹理特征等3种特征,通过比较贝叶斯(Bayes)、K最邻近分类(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、决策树(Decision Tree,DT)和随机森林(Random...
Saved in:
Published in | 农业工程学报 Vol. 37; no. 18; pp. 48 - 54 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
安徽师范大学地理与旅游学院,芜湖241002
15.09.2021
江淮流域地表过程与区域响应安徽省重点实验室,芜湖241002%浙江农林大学环境与资源学院,杭州311300%安徽省太湖县自然资源和规划局,安庆246400%安徽师范大学地理与旅游学院,芜湖241002 |
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2021.18.006 |
Cover
Abstract | S127; 为探究易获取且成本低的超高分辨率无人机(Unmanned Aerial Vehicle,UAV)航拍"红-绿-蓝"(Red-Green-Blue,RGB)彩色影像提取作物种植信息的方法,该研究选取植被指数、"色度-色饱和度-亮度"(Hue-Saturation-Intensity,HSI)色彩特征和纹理特征等3种特征,通过比较贝叶斯(Bayes)、K最邻近分类(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、决策树(Decision Tree,DT)和随机森林(Random Forest,RF)共5种监督分类算法及不同特征组合的分类效果,以实现玉米种植信息的高精度提取.结果 表明,使用单一种类特征或使用全部3种特征均不能获得最优的分类精度;将植被指数与HSI色彩特征或与纹理特征进行组合获得的总体分类精度(5种算法平均值)比仅使用植被指数获得的总体分类精度分别提高了4.2%和8.3%;在所有特征组合中,HSI色彩特征和纹理特征组合为最优选择,基于该特征空间的RF算法获得了最高的分类精度,总精度为86.2%,Kappa系数为0.793;基于RF算法进行降维并不能显著提高或降低分类精度(SVM除外),但所保留的特征因子可给出符合实际背景和意义的解释,并可提高分类结果的稳定性.研究结果可为基于无人机RGB影像的作物种植信息高精度提取提供方法参考. |
---|---|
AbstractList | S127; 为探究易获取且成本低的超高分辨率无人机(Unmanned Aerial Vehicle,UAV)航拍"红-绿-蓝"(Red-Green-Blue,RGB)彩色影像提取作物种植信息的方法,该研究选取植被指数、"色度-色饱和度-亮度"(Hue-Saturation-Intensity,HSI)色彩特征和纹理特征等3种特征,通过比较贝叶斯(Bayes)、K最邻近分类(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、决策树(Decision Tree,DT)和随机森林(Random Forest,RF)共5种监督分类算法及不同特征组合的分类效果,以实现玉米种植信息的高精度提取.结果 表明,使用单一种类特征或使用全部3种特征均不能获得最优的分类精度;将植被指数与HSI色彩特征或与纹理特征进行组合获得的总体分类精度(5种算法平均值)比仅使用植被指数获得的总体分类精度分别提高了4.2%和8.3%;在所有特征组合中,HSI色彩特征和纹理特征组合为最优选择,基于该特征空间的RF算法获得了最高的分类精度,总精度为86.2%,Kappa系数为0.793;基于RF算法进行降维并不能显著提高或降低分类精度(SVM除外),但所保留的特征因子可给出符合实际背景和意义的解释,并可提高分类结果的稳定性.研究结果可为基于无人机RGB影像的作物种植信息高精度提取提供方法参考. |
Author | 董娅 贾蔡 耿涛 周悦 施金辉 骆文慧 支俊俊 鲁李灿 夏敬霞 |
AuthorAffiliation | 安徽师范大学地理与旅游学院,芜湖241002;江淮流域地表过程与区域响应安徽省重点实验室,芜湖241002%浙江农林大学环境与资源学院,杭州311300%安徽省太湖县自然资源和规划局,安庆246400%安徽师范大学地理与旅游学院,芜湖241002 |
AuthorAffiliation_xml | – name: 安徽师范大学地理与旅游学院,芜湖241002;江淮流域地表过程与区域响应安徽省重点实验室,芜湖241002%浙江农林大学环境与资源学院,杭州311300%安徽省太湖县自然资源和规划局,安庆246400%安徽师范大学地理与旅游学院,芜湖241002 |
Author_FL | Luo Wenhui Geng Tao Lu Lican Zhou Yue Xia Jingxia Shi Jinhui Zhi Junjun Dong Ya Jia Cai |
Author_FL_xml | – sequence: 1 fullname: Zhi Junjun – sequence: 2 fullname: Dong Ya – sequence: 3 fullname: Lu Lican – sequence: 4 fullname: Shi Jinhui – sequence: 5 fullname: Luo Wenhui – sequence: 6 fullname: Zhou Yue – sequence: 7 fullname: Geng Tao – sequence: 8 fullname: Xia Jingxia – sequence: 9 fullname: Jia Cai |
Author_xml | – sequence: 1 fullname: 支俊俊 – sequence: 2 fullname: 董娅 – sequence: 3 fullname: 鲁李灿 – sequence: 4 fullname: 施金辉 – sequence: 5 fullname: 骆文慧 – sequence: 6 fullname: 周悦 – sequence: 7 fullname: 耿涛 – sequence: 8 fullname: 夏敬霞 – sequence: 9 fullname: 贾蔡 |
BookMark | eNo9jz9Lw0Achm-oYK39GOKU-Ltc7i432qJVKAiic8kludIiV_AQdRRdHPpnsYoIKogODlI7GVC_THLBb2FFcXrgHZ6XZwGVdE8nCC1hcDEWnK503Y4x2sUAnsMCLFwPPOziwAVgJVT-3-dR1ZiOBIoJB_BxGdXy2zRLB_byLktTe5NuN2r5-yQ_HRbXZ8XgvJhMi6e-fehnn_f25OXr-ap4_cjTRzsc5cOxHb_Z6cUimlPhnkmqf6yg3fW1nfqG09xqbNZXm47B4DGHChoLRTn44MuYhSqmjGMfODAqYx4r3yOBoiCIFFQmkeSMSyBKhhARnvikgpZ_vYehVqFut7q9g309e2zp43Z0JH-acTArJt861mbr |
ClassificationCodes | S127 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11975/j.issn.1002-6819.2021.18.006 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitle_FL | High-precision extraction method for maize planting information based on UAV RGB images |
EndPage | 54 |
ExternalDocumentID | nygcxb202118006 |
GrantInformation_xml | – fundername: (国家自然科学基金项目); (教育部人文社会科学研究青年基金项目); (安徽师范大学博士科研启动金项目); (安徽师范大学大学生创新创业训练计划项目) funderid: (国家自然科学基金项目); (教育部人文社会科学研究青年基金项目); (安徽师范大学博士科研启动金项目); (安徽师范大学大学生创新创业训练计划项目) |
GroupedDBID | -04 2B. 4A8 5XA 5XE 92G 92I 93N ABDBF ABJNI ACGFO ACGFS ACUHS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CW9 EOJEC FIJ IPNFZ OBODZ PSX RIG TCJ TGD TUS U1G U5N |
ID | FETCH-LOGICAL-s1026-595d9f570404bd6afd5671407065bd7df4238f5093b95becb767b03fba0c37e43 |
ISSN | 1002-6819 |
IngestDate | Thu May 29 04:08:36 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 18 |
Keywords | 模型;遥感;无人机;玉米;植被指数;纹理特征;机器学习 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1026-595d9f570404bd6afd5671407065bd7df4238f5093b95becb767b03fba0c37e43 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_nygcxb202118006 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | 农业工程学报 |
PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
PublicationYear | 2021 |
Publisher | 安徽师范大学地理与旅游学院,芜湖241002 江淮流域地表过程与区域响应安徽省重点实验室,芜湖241002%浙江农林大学环境与资源学院,杭州311300%安徽省太湖县自然资源和规划局,安庆246400%安徽师范大学地理与旅游学院,芜湖241002 |
Publisher_xml | – name: 江淮流域地表过程与区域响应安徽省重点实验室,芜湖241002%浙江农林大学环境与资源学院,杭州311300%安徽省太湖县自然资源和规划局,安庆246400%安徽师范大学地理与旅游学院,芜湖241002 – name: 安徽师范大学地理与旅游学院,芜湖241002 |
SSID | ssib051370041 ssj0041925 ssib001101065 ssib023167668 |
Score | 2.3580508 |
Snippet | S127; 为探究易获取且成本低的超高分辨率无人机(Unmanned Aerial... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 48 |
Title | 基于无人机RGB影像的玉米种植信息高精度提取方法 |
URI | https://d.wanfangdata.com.cn/periodical/nygcxb202118006 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5iAqIH8Ylv9mAfZ51H93T3sSc7YxD0IAnkFuaxE08byAM0N9GLhyRejCKCiqIHDxJzckH9M7uz-C-sqpl9GMUXLE1Nb_XXNVXTUzVDdY1lXeG-avNcZbbMPN_maebYKsmlnYvCl8JN2onADc43bgZzC_z6olicOvR6ImtpYz1tZpu_3FfyP1aFPrAr7pL9B8uOQKEDaLAvtGBhaP_KxiwSTMcsNCzi2KqIRQHTkhmn7sG_oGcWiFvXQuQPWyx0kVA-UzGLJNMwkCMBw5VGAhhCHwkDnS1EMJwIwIyZcbFHuczAcM1MyLSiUR4LI5rCMBMQT8y0Q3MBQT3QhhoJwK8-ezmMjImNRMVZFEqFUCCDIEkUUyS_aQ3BYRYxvF4Im5NEJKMyI2LMAqAgtE8oADcxWKPwis5Lt0iNEg_D-Af8AJUHvEoiEMCFqLDJ9yaei0ke1c5RutJprkqtAtkRQODpKYUAahbNgDwcdT0-PUE2c8g8DuqlUsrIwEqQEhX-xqM002APD5YNgRvSJmlcBxBDOc7EO148sgNVe5LaSVWVcYaLUU24nKpQaR28VAW5f3aLWgryizhBczRBE_XSdDGb-EA5cgpwOneXszsp8riKytrPeFJiLsSMCVthPI66XXyxMHILHhZXCMZPscL18RsKo8wrzDsQlIRQi3HYYkMhr_5ORNpX1ymSzvJECDh_3DpWP7s1TLUQT1hTm7dPWkfN8mpdv6Z9ygr7L7q97nb55GWv2y2fd2HR9T_v9e_vDJ49GGw_HOztD95tlW-2el9flfc-fHv_dPDxS7_7ttx51N_ZLXc_lfuPT1sLcTQ_O2fXnymx1yA6D2yhRa4LIcEd8jQPkiIXAZbBxASCNJd5AU8sqoDA3E-1gFtmKgOZOn6RJk7myzb3z1jTnZVO-6zVAA-bOXleZKlOeeIUiQcPEDxJXJ15buryc1aj1sBSfRtaWzpgpfN_ZrlgHRkviIvW9PrqRvsShNbr6eXatN8BePCcgw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%97%A0%E4%BA%BA%E6%9C%BARGB%E5%BD%B1%E5%83%8F%E7%9A%84%E7%8E%89%E7%B1%B3%E7%A7%8D%E6%A4%8D%E4%BF%A1%E6%81%AF%E9%AB%98%E7%B2%BE%E5%BA%A6%E6%8F%90%E5%8F%96%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%94%AF%E4%BF%8A%E4%BF%8A&rft.au=%E8%91%A3%E5%A8%85&rft.au=%E9%B2%81%E6%9D%8E%E7%81%BF&rft.au=%E6%96%BD%E9%87%91%E8%BE%89&rft.date=2021-09-15&rft.pub=%E5%AE%89%E5%BE%BD%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6%E5%9C%B0%E7%90%86%E4%B8%8E%E6%97%85%E6%B8%B8%E5%AD%A6%E9%99%A2%2C%E8%8A%9C%E6%B9%96241002&rft.issn=1002-6819&rft.volume=37&rft.issue=18&rft.spage=48&rft.epage=54&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2021.18.006&rft.externalDocID=nygcxb202118006 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |