基于无人机视频影像的油菜苗检测与计数

S252; 针对油菜生长早期传统人工苗情调查方法效率低、主观意识强,不能满足大面积或经常性高精度苗期调查作业需求的问题,该研究基于无人机影像及机器学习技术,提出一种油菜苗视频流检测模型及计数方法.通过对YOLO系列基础模型添加多头自注意力,用BasicRFB(basic receptive field block)模块替换原有的空间池化结构(spatial pyramid pooling-fast,SPPF)模块,并对Neck部分添加一维卷积及更换下采样方式等,进一步结合DeepSORT(deep simple online and real-time tracking)算法和越线计数技术实现...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 40; no. 10; pp. 147 - 156
Main Authors 黄小毛, 张维, 邱天, 朱耀宗, 徐世兴, 李文成
Format Journal Article
LanguageChinese
Published 华中农业大学工学院,武汉 430070 01.05.2024
农业农村部长江中下游农业装备重点实验室,武汉 430070%华中农业大学工学院,武汉 430070
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202312224

Cover

Loading…
Abstract S252; 针对油菜生长早期传统人工苗情调查方法效率低、主观意识强,不能满足大面积或经常性高精度苗期调查作业需求的问题,该研究基于无人机影像及机器学习技术,提出一种油菜苗视频流检测模型及计数方法.通过对YOLO系列基础模型添加多头自注意力,用BasicRFB(basic receptive field block)模块替换原有的空间池化结构(spatial pyramid pooling-fast,SPPF)模块,并对Neck部分添加一维卷积及更换下采样方式等,进一步结合DeepSORT(deep simple online and real-time tracking)算法和越线计数技术实现对油菜苗的数量统计.算例测试结果表明,改进后YOLOv5s的交并比阈值0.50的平均精度均值达到93.1%,交并比阈值0.50~0.95的平均精度均值达到了 67.5%,明显优于Faster R-CNN、SSD和YOLOX等其他经典目标检测算法,交并比阈值0.50的平均精度均值分别高出14.82、26.37和3.3个百分点,交并比阈值0.50~0.95的平均精度均值分别高出25.7、33.9和6.7个百分点.油菜苗计数试验结果表明,离线视频计数时,在合理的种植密度区间内,所提算法的油菜苗计数精度平均达到93.75%,平均计数效率为人工计数的9.54倍;在线实时计数时,在不同天气情况下,计数平台的油菜苗计数精度最大相差1.87个百分点,具有良好的泛化性,满足油菜苗计数实时性要求.
AbstractList S252; 针对油菜生长早期传统人工苗情调查方法效率低、主观意识强,不能满足大面积或经常性高精度苗期调查作业需求的问题,该研究基于无人机影像及机器学习技术,提出一种油菜苗视频流检测模型及计数方法.通过对YOLO系列基础模型添加多头自注意力,用BasicRFB(basic receptive field block)模块替换原有的空间池化结构(spatial pyramid pooling-fast,SPPF)模块,并对Neck部分添加一维卷积及更换下采样方式等,进一步结合DeepSORT(deep simple online and real-time tracking)算法和越线计数技术实现对油菜苗的数量统计.算例测试结果表明,改进后YOLOv5s的交并比阈值0.50的平均精度均值达到93.1%,交并比阈值0.50~0.95的平均精度均值达到了 67.5%,明显优于Faster R-CNN、SSD和YOLOX等其他经典目标检测算法,交并比阈值0.50的平均精度均值分别高出14.82、26.37和3.3个百分点,交并比阈值0.50~0.95的平均精度均值分别高出25.7、33.9和6.7个百分点.油菜苗计数试验结果表明,离线视频计数时,在合理的种植密度区间内,所提算法的油菜苗计数精度平均达到93.75%,平均计数效率为人工计数的9.54倍;在线实时计数时,在不同天气情况下,计数平台的油菜苗计数精度最大相差1.87个百分点,具有良好的泛化性,满足油菜苗计数实时性要求.
Abstract_FL Early growth of rapeseed can be used to assess the performance of seeder,grain yield,crop management,and fertilizer application.Rapid and accurate detection is critical to rapeseed production and yield.However,the manual seedling survey cannot fully meet the operational demands for the extensive or frequent high-precision seedling,due to the low efficiency and subjectivity.In this study,efficient detection and counting models were proposed for the video stream of rapeseed seedlings using unmanned aerial vehicle(UAV)imagery and machine learning.Multi-head self-attention was added to the YOLO series models.The attention was then reduced to irrelevant semantic information.The model was improved to focus on the target object.The basic receptive field block(BasicRFB)module was selected to replace the original spatial pyramid pooling-fast(SPPF)module.One-dimensional convolution was added to the Neck part.The downsampling was then changed to achieve the target of rapeseed seedlings in the image.The efficient fusion of features was also promoted to focus on the key features among other interference factors.The deep simple online and real-time tracking(DeepSORT)was further combined with the cross-line counting to achieve the continuous tracking and target number counting.In addition,the counting model was deployed on edge computing devices.A real-time target counting was designed using a multi-rotor UAV platform.The edge computing device was used to realize the real-time detection and counting of rape seedlings.The targets of rape seedlings were processed in the video stream that was captured by the camera in real time.The experimental results show that:1)The improved model with multi-head self-attention was significantly focused on the rape seedling area in the image.A better performance was achieved in extracting the target features than before.2)The detection accuracy of rapeseed seedlings was improved using BasicRFB and the operator of the Neck part.The detection misjudgment of targets was reduced to effectively alleviate the negative impact of invalid targets in the image background.3)The improved YOLOv5s was achieved in the AP50 and AP95 scores of 93.1%and 67.5%,respectively.Among them,AP50 was significantly higher by 14.82,26.37,and 3.3 percentage points,respectively,while AP95 was higher by 25.7,33.9,and 6.7 percentage points,respectively,compared with the classical target detection,such as Faster R-CNN,SSD,and YOLOX.The counting trial of rapeseed seedlings demonstrated that the counting model achieved the maximum precision of 96.34%with an average of 93.75%.Furthermore,the rapeseed counting efficiency exceeded the well-trained operator with an average increase of 9.52 times.In the case of online real-time counting of rapeseed seedlings,the maximum difference in counting precision was 1.87%on the UAV counting platform under different weather conditions.The excellent generalization,counting precision,and efficiency fully met the real-time requirements for rapeseed seedlings.The finding can provide a powerful reference to assess the quality of rapeseed seeding and field management.
Author 张维
邱天
朱耀宗
徐世兴
李文成
黄小毛
AuthorAffiliation 华中农业大学工学院,武汉 430070;农业农村部长江中下游农业装备重点实验室,武汉 430070%华中农业大学工学院,武汉 430070
AuthorAffiliation_xml – name: 华中农业大学工学院,武汉 430070;农业农村部长江中下游农业装备重点实验室,武汉 430070%华中农业大学工学院,武汉 430070
Author_FL XU Shixing
QIU Tian
LI Wencheng
ZHANG Wei
HUANG Xiaomao
ZHU Yaozong
Author_FL_xml – sequence: 1
  fullname: HUANG Xiaomao
– sequence: 2
  fullname: ZHANG Wei
– sequence: 3
  fullname: QIU Tian
– sequence: 4
  fullname: ZHU Yaozong
– sequence: 5
  fullname: XU Shixing
– sequence: 6
  fullname: LI Wencheng
Author_xml – sequence: 1
  fullname: 黄小毛
– sequence: 2
  fullname: 张维
– sequence: 3
  fullname: 邱天
– sequence: 4
  fullname: 朱耀宗
– sequence: 5
  fullname: 徐世兴
– sequence: 6
  fullname: 李文成
BookMark eNo9j7tKA0EARaeIYEzyFRZWu857dkoJviBgo3WY3ZkNCTIBB1E7QbEJJFhIIAR8FelEBUEX_Jvdcf0LFxSrA7c4l7MCanZoDQCrCIYIScHWB2HfORsiCHHAIyRDDDFBGGNaA_X_dRm0nOvHkCEiIKSoDnhxm-XZ2E_v8izz86xcXH0_XBefL8XF5Gt26V8_ysm8HE3947l_G-Xv4_Lp3t88N8FSqg6daf2xAQ62NvfbO0Fnb3u3vdEJHIKYBQZrGlNoYCw115pLbiKMlTBQGaGjBEtBmTEpI5wImTDGeCyp0YKnSESKkgZY-_WeKJsq2-sOhsdHtnrs2rNechpXlbSqQ4z8ABenXzY
ClassificationCodes S252
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202312224
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Rapeseed seedling detection and counting based on UAV videos
EndPage 156
ExternalDocumentID nygcxb202410015
GrantInformation_xml – fundername: (国家自然科学基金); (国家重点研发计划); (中央高校基本科研业务费专项)
  funderid: (国家自然科学基金); (国家重点研发计划); (中央高校基本科研业务费专项)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1025-e2d4b40e0b9d6dd696e822a7e0ae7d8c29745eef536379c5556b94ed76f178a43
ISSN 1002-6819
IngestDate Thu May 29 04:08:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords YOLO
deep learning
online real-time counting
在线实时计数
DeepSORT
深度学习
无人机
UAV
油菜苗
offline video counting
离线视频计数
rapeseed seedling
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1025-e2d4b40e0b9d6dd696e822a7e0ae7d8c29745eef536379c5556b94ed76f178a43
PageCount 10
ParticipantIDs wanfang_journals_nygcxb202410015
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2024
Publisher 华中农业大学工学院,武汉 430070
农业农村部长江中下游农业装备重点实验室,武汉 430070%华中农业大学工学院,武汉 430070
Publisher_xml – name: 农业农村部长江中下游农业装备重点实验室,武汉 430070%华中农业大学工学院,武汉 430070
– name: 华中农业大学工学院,武汉 430070
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.432823
Snippet S252; 针对油菜生长早期传统人工苗情调查方法效率低、主观意识强,不能满足大面积或经常性高精度苗期调查作业需求的问题,该研究基于无人机影像及机器学习技术,提出一种油菜苗视频流检测模型及计数方法.通过对YOLO系列基础模型添加多头自注意力,用BasicRFB(basic receptive field...
SourceID wanfang
SourceType Aggregation Database
StartPage 147
Title 基于无人机视频影像的油菜苗检测与计数
URI https://d.wanfangdata.com.cn/periodical/nygcxb202410015
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_9ANGD-InfFDQn2TqZSTLJMbM7SxH01EI9lfnI1NMK7Ra0J0HxUmjxIAUp-HXwJioIuuB_067rf-F72dmZQSt-XEJ4Sd57v3mZvJfhTULINZtqP9W5buWZL1o8UUUrSRhr5V5is0DIQrhPA7duy4UlfnNZLE9N32lkLW300_ls89D_Sv7HqkADu-Jfsv9g2YopEKAO9oUSLAzlX9mYxoLqLo0MjTmWKqaxpDqkxisp2ASUtqsoakKqJI01NT7VDIdHHRq5igqo6tI4pBr4cBwV-TTSOArowAErETKHJhNghgT2EUhEWcpJBxExNcwJBeZeM_Z1Upwy4_4gCBUAbQXKNY4_UEyHGokclIGmyYxAraPIqYaMnbKgCKgW1V2gpe3Ah9g34s3Byi-RGk6NrlvGj4c5fJ6DJRDEOJ938kHE53X6oZvCDkzHYXZgQOlD4aGwsIGqAlxRNNXOHn7bAZqAB42Uvs4DPCmp4TnQtUhVrv-la-Fe8xXyGo6Cjc8ZLWMONj5c_Vd3pkPh_BmKmK9EzOOd9wwiO1578Sq3svdgNbuf4oPB47XENJn1YQcFPmvWRJ2oW8fKDD8HVIu5j0ciyHrvKViANx9U-VKYLSBc6kCpxBFydaLijd8r6P6F6xVJb7URti2eIMfL_dacGb88J8nU5t1T5JhZXSvPnLGniTx4MdgfbA93X-4PBsO9wejtk--vnx58_XDwaOfb88fDj19GO3ujrd3hm4fDT1v7n7dH714Nn70_Q5a68WJ7oVVeJ9JaZ3hps_VznnLPerA2yTyXWlqIjpPQwrIU5irzYWstrC1EIINQZ0IImWpu81AWLFQJD86Smd69nj1H5tIA8zUKy6zgXGZhwqGHUCrLmLCs8M-TuRL1SrlcrK_8ZJcLf-5ykRyt5_clMtNf27CXIQTup1dKY_4AvuyEWg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%97%A0%E4%BA%BA%E6%9C%BA%E8%A7%86%E9%A2%91%E5%BD%B1%E5%83%8F%E7%9A%84%E6%B2%B9%E8%8F%9C%E8%8B%97%E6%A3%80%E6%B5%8B%E4%B8%8E%E8%AE%A1%E6%95%B0&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%BB%84%E5%B0%8F%E6%AF%9B&rft.au=%E5%BC%A0%E7%BB%B4&rft.au=%E9%82%B1%E5%A4%A9&rft.au=%E6%9C%B1%E8%80%80%E5%AE%97&rft.date=2024-05-01&rft.pub=%E5%8D%8E%E4%B8%AD%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%AD%A6%E9%99%A2%2C%E6%AD%A6%E6%B1%89+430070&rft.issn=1002-6819&rft.volume=40&rft.issue=10&rft.spage=147&rft.epage=156&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202312224&rft.externalDocID=nygcxb202410015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg