基于RBF神经网络的2024铝合金酸性 盐雾腐蚀实验预测

TG146.2+1; 选用飞机结构材料2024铝合金进行不同条件下的酸性盐雾实验,设定盐雾实验的pH值分别为2、3、5,盐雾浓度分别为25 g/L、50 g/L、75 g/L,腐蚀时间分别为24 h、48 h、72 h.将径向基函数神经网络(radial basis function neural networks,RBF)与正交实验设计相结合,选取不同的实验条件组作为神经网络的学习样本集,并通过极差分析对正交实验结果进行分析.结果表明:采用RBF与正交实验设计相结合的方法,能够较准确地预测任意实验条件下的腐蚀速率,减少实验次数,提高预测精度;把正交组和顶点补充组同时作为学习样本集的预测结果要...

Full description

Saved in:
Bibliographic Details
Published in航空材料学报 Vol. 39; no. 4; pp. 32 - 39
Main Authors 贾宝惠, 方艺斌, 王毅强
Format Journal Article
LanguageChinese
Published 中国民航大学航空工程学院,天津,300300%中国民航大学中欧航空工程师学院,天津,300300 01.08.2019
Subjects
Online AccessGet full text
ISSN1005-5053
DOI10.11868/j.issn.1005-5053.2018.000114

Cover

Abstract TG146.2+1; 选用飞机结构材料2024铝合金进行不同条件下的酸性盐雾实验,设定盐雾实验的pH值分别为2、3、5,盐雾浓度分别为25 g/L、50 g/L、75 g/L,腐蚀时间分别为24 h、48 h、72 h.将径向基函数神经网络(radial basis function neural networks,RBF)与正交实验设计相结合,选取不同的实验条件组作为神经网络的学习样本集,并通过极差分析对正交实验结果进行分析.结果表明:采用RBF与正交实验设计相结合的方法,能够较准确地预测任意实验条件下的腐蚀速率,减少实验次数,提高预测精度;把正交组和顶点补充组同时作为学习样本集的预测结果要优于单单只有正交组作为学习样本集的预测结果.极差分析结果表明,对2024铝合金单位面积的质量损耗影响最大的因素是溶液的pH值,其次是盐雾浓度,腐蚀时间的影响最小.
AbstractList TG146.2+1; 选用飞机结构材料2024铝合金进行不同条件下的酸性盐雾实验,设定盐雾实验的pH值分别为2、3、5,盐雾浓度分别为25 g/L、50 g/L、75 g/L,腐蚀时间分别为24 h、48 h、72 h.将径向基函数神经网络(radial basis function neural networks,RBF)与正交实验设计相结合,选取不同的实验条件组作为神经网络的学习样本集,并通过极差分析对正交实验结果进行分析.结果表明:采用RBF与正交实验设计相结合的方法,能够较准确地预测任意实验条件下的腐蚀速率,减少实验次数,提高预测精度;把正交组和顶点补充组同时作为学习样本集的预测结果要优于单单只有正交组作为学习样本集的预测结果.极差分析结果表明,对2024铝合金单位面积的质量损耗影响最大的因素是溶液的pH值,其次是盐雾浓度,腐蚀时间的影响最小.
Author 贾宝惠
方艺斌
王毅强
AuthorAffiliation 中国民航大学航空工程学院,天津,300300%中国民航大学中欧航空工程师学院,天津,300300
AuthorAffiliation_xml – name: 中国民航大学航空工程学院,天津,300300%中国民航大学中欧航空工程师学院,天津,300300
Author_FL JIA Baohui
FANG Yibin
WANG Yiqiang
Author_FL_xml – sequence: 1
  fullname: JIA Baohui
– sequence: 2
  fullname: FANG Yibin
– sequence: 3
  fullname: WANG Yiqiang
Author_xml – sequence: 1
  fullname: 贾宝惠
– sequence: 2
  fullname: 方艺斌
– sequence: 3
  fullname: 王毅强
BookMark eNo9j09LAkEchudgkJnfoUt02u03_3Znj2VZgRBEnWVnmylNRmiJOnpQCopSumkZBBF06BaEUp-mddxv0UbR6YXnhfflmUM50zQKoUUMLsbCE8t1txbHxsUA3OHAqUsACxcAMGY5lP_ns6gYxzX5w0kguMijteRh9DW63lkt26ehHd_Yj54d39l-mwBh6e190r1Iz3tp533Sel6wg246-Jx2utN-K3kdpi9X6WN78nY5j2Z02IhV8S8LaK-8vlvadCrbG1ullYoTYyDcESSkRLEwCDzi0ygKlZQ8UlkVeVlHOKe-8EH50b5PNGjBAaRmWAntM8kZLaCl393T0OjQHFTrzZNjkz1WD4-ixpnMrANgmSz9BvfAZKE
ClassificationCodes TG146.2+1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11868/j.issn.1005-5053.2018.000114
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Prediction of acid salt spray corrosion experiment of 2024 aluminum alloy based on RBF neural network
EndPage 39
ExternalDocumentID hkclxb201904005
GrantInformation_xml – fundername: 部委计划项目; 中央高校基本科研业务费
  funderid: (MJ-2016-Y-73); (3122016B003)
GroupedDBID -03
2B.
4A8
5VS
5XA
5XC
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
FIJ
GROUPED_DOAJ
IPNFZ
PSX
RIG
TCJ
TGT
U1G
U5L
U5M
ID FETCH-LOGICAL-s1025-82a32e4a996273ccaebb5ce025c682a25537870e7cd72f0f8500bf41e8f74b543
ISSN 1005-5053
IngestDate Thu May 29 04:00:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 径向基函数神经网络
酸性盐雾实验
正交实验
铝合金
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1025-82a32e4a996273ccaebb5ce025c682a25537870e7cd72f0f8500bf41e8f74b543
PageCount 8
ParticipantIDs wanfang_journals_hkclxb201904005
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle 航空材料学报
PublicationTitle_FL Journal of Aeronautical Materials
PublicationYear 2019
Publisher 中国民航大学航空工程学院,天津,300300%中国民航大学中欧航空工程师学院,天津,300300
Publisher_xml – name: 中国民航大学航空工程学院,天津,300300%中国民航大学中欧航空工程师学院,天津,300300
SSID ssib001129858
ssib023167179
ssib051375391
ssj0000561693
ssib038074666
ssib031741046
Score 2.2028067
Snippet TG146.2+1; 选用飞机结构材料2024铝合金进行不同条件下的酸性盐雾实验,设定盐雾实验的pH值分别为2、3、5,盐雾浓度分别为25 g/L、50 g/L、75 g/L,腐蚀时间分别为24 h、48 h、72 h.将径向基函数神经网络(radial basis function neural...
SourceID wanfang
SourceType Aggregation Database
StartPage 32
Title 基于RBF神经网络的2024铝合金酸性 盐雾腐蚀实验预测
URI https://d.wanfangdata.com.cn/periodical/hkclxb201904005
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsIkRRA_iE9_swfYiG-fRPd19nJ6dJQh6kARyCzOzMwaUFUwCklMOCQqKJnhLNIIgggdvgiTo15hs9i-sqp3MDkY0CSxDp6a6uh67XdWd6mrGbhaZUTJz02aQSzySI5xmkgrdzFQHglOTBrqDp5Hv3Q_GJ8XdKTk1MnqrlrU0P5eOZQt_PVdyFKsCDOyKp2QPYdmKKACgDfaFJ1gYngeyMY8lN21uQx4LfOr4gW3zWPEQ4DE2rOWaILbFjVtCTIQNA_jCA-fJY8ONz02LyDlca4RoRR2gIbkFSIA5EaG6TV0t4mE3yy2MoxEJIZqoOkgojIkFw0OARNTwYEAkZCXXth4VEwWNmMi7IYECZAhpQgM-hmi2eBgQKyGIuPddwd5WECODYVuE4vPQGaIQFWtopGoAwIqGKAr0B4zhm7CNEgE5G_FyJ6PcGcHDWLq-M0Kq18gaas-iolFEh7RXiQWMCdBeTYj9EsNoZDmEaGKkQjaoANCfF-2RMjSKQHwv8nESdbgnj8pM1QtEj-jVwdizhHZIPmt-EAvUQnDs1x3loOpUOSGImtcrd6gH8dMAa79n1oEm14z0xyr6mFyJ2cy4Lh-GJFWi6Myj7PGzFI2LzkYeY8c9pQbpGOXWCYX9ELTWajJ5WN3BHf73GUJkgakM1d9YAKq2bJeuD4v2smbU4E6AAGsUUaJEyecJxvekuPMvGejsX7dIug9rYerEGXa6XF82wsFkcZaNLMycY6dqVUfPs9b2h81fm69hquh92uhtven9WO1tveutLeFk0H_7fnvlRf_5an_5-87i50ZvfaW__nN3eWV3bXH760b_y6v-x6Wdby8vsMl2PBGNN8vLVJqzLl5Zrb3E93KRGLxty4d5O09TmeXwKgvgnSelj747V1lHeYVTaOk4aSHcXBdKpFL4F9lo90k3v8QaSeIFiVS-dIuO8FwnKRKsdQ6LOSGV8v3LrFHqYLqcLGen_zDklf-jXGUnhz_qa2x07ul8fh0WAHPpDbL-b2fTuNw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ERBF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%842024%E9%93%9D%E5%90%88%E9%87%91%E9%85%B8%E6%80%A7+%E7%9B%90%E9%9B%BE%E8%85%90%E8%9A%80%E5%AE%9E%E9%AA%8C%E9%A2%84%E6%B5%8B&rft.jtitle=%E8%88%AA%E7%A9%BA%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=%E8%B4%BE%E5%AE%9D%E6%83%A0&rft.au=%E6%96%B9%E8%89%BA%E6%96%8C&rft.au=%E7%8E%8B%E6%AF%85%E5%BC%BA&rft.date=2019-08-01&rft.pub=%E4%B8%AD%E5%9B%BD%E6%B0%91%E8%88%AA%E5%A4%A7%E5%AD%A6%E8%88%AA%E7%A9%BA%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%A4%A9%E6%B4%A5%2C300300%25%E4%B8%AD%E5%9B%BD%E6%B0%91%E8%88%AA%E5%A4%A7%E5%AD%A6%E4%B8%AD%E6%AC%A7%E8%88%AA%E7%A9%BA%E5%B7%A5%E7%A8%8B%E5%B8%88%E5%AD%A6%E9%99%A2%2C%E5%A4%A9%E6%B4%A5%2C300300&rft.issn=1005-5053&rft.volume=39&rft.issue=4&rft.spage=32&rft.epage=39&rft_id=info:doi/10.11868%2Fj.issn.1005-5053.2018.000114&rft.externalDocID=hkclxb201904005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhkclxb%2Fhkclxb.jpg