基于PP-PicoDet-XS的改进铝型材表面缺陷检测算法
TP391.4; 铝型材在生产加工过程中会产生特征不明显和尺度大小不一等多类型的表面缺陷,针对现有人工抽检方法准确率低、实时性差、主观性强等问题,提出一种基于PP-PicoDet-XS的改进铝型材表面缺陷检测算法.改进的算法在主干网络中嵌入无参注意力SimAM,增强对深层有效特征的提取能力;使用SIoU(Scylla intersection over union)损失函数对训练过程进行优化,提高预测框的定位能力;采用量化蒸馏策略对模型进行压缩,提高推理速度.结果表明,改进的算法平均精度均值在交并比(intersection over union,IoU)阈值为0.5时达到了98.93%,在I...
Saved in:
Published in | 东北大学学报(自然科学版) Vol. 45; no. 11; pp. 1557 - 1564 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004
15.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1005-3026 |
DOI | 10.12068/j.issn.1005-3026.2024.11.005 |
Cover
Abstract | TP391.4; 铝型材在生产加工过程中会产生特征不明显和尺度大小不一等多类型的表面缺陷,针对现有人工抽检方法准确率低、实时性差、主观性强等问题,提出一种基于PP-PicoDet-XS的改进铝型材表面缺陷检测算法.改进的算法在主干网络中嵌入无参注意力SimAM,增强对深层有效特征的提取能力;使用SIoU(Scylla intersection over union)损失函数对训练过程进行优化,提高预测框的定位能力;采用量化蒸馏策略对模型进行压缩,提高推理速度.结果表明,改进的算法平均精度均值在交并比(intersection over union,IoU)阈值为0.5时达到了98.93%,在IoU阈值0.5~0.95范围内达到了57.60%,较未压缩的原始模型分别提高了1.73%和4.13%.将该算法部署到骁龙865移动端平台上进行推理,推理速度可达116.82帧/s,较未压缩的原始模型提高了47帧/s. |
---|---|
AbstractList | TP391.4; 铝型材在生产加工过程中会产生特征不明显和尺度大小不一等多类型的表面缺陷,针对现有人工抽检方法准确率低、实时性差、主观性强等问题,提出一种基于PP-PicoDet-XS的改进铝型材表面缺陷检测算法.改进的算法在主干网络中嵌入无参注意力SimAM,增强对深层有效特征的提取能力;使用SIoU(Scylla intersection over union)损失函数对训练过程进行优化,提高预测框的定位能力;采用量化蒸馏策略对模型进行压缩,提高推理速度.结果表明,改进的算法平均精度均值在交并比(intersection over union,IoU)阈值为0.5时达到了98.93%,在IoU阈值0.5~0.95范围内达到了57.60%,较未压缩的原始模型分别提高了1.73%和4.13%.将该算法部署到骁龙865移动端平台上进行推理,推理速度可达116.82帧/s,较未压缩的原始模型提高了47帧/s. |
Abstract_FL | During the production and processing of aluminum profiles,multiple types of surface defects such as unclear features and varying scales may generate.In response to the problems of low accuracy,poor real-time performance,and strong subjectivity in existing manual sampling method,an improved surface defects detection algorithm is proposed for aluminum profiles based on PP-PicoDet-XS.The SimAM attention was embedded in the backbone to enhance the ability of extracting deep effective features.The SIoU(Scylla intersection over union)loss function is used to optimize the training process to improve the positioning ability of the prediction boxes.The quantization and distillation were used to compress the model to improve the inference speed.The results show that the improved algorithm achieves a mean average precision of 98.93%at intersection over union(IoU)threshold of 0.5,and 57.60%across IoU thresholds ranging from 0.5 to 0.95,which is 1.73%and 4.13%higher than the uncompressed original model.Deploying this algorithm on the Snapdragon 865 mobile platform for inference,the inference speed can reach 116.82 frames per second,which is 47 frames per second higher than the uncompressed original model. |
Author | 马淑华 李立振 沙晓鹏 秦汉民 |
AuthorAffiliation | 东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004 |
AuthorAffiliation_xml | – name: 东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004 |
Author_FL | QIN Han-min MA Shu-hua LI Li-zhen SHA Xiao-peng |
Author_FL_xml | – sequence: 1 fullname: MA Shu-hua – sequence: 2 fullname: LI Li-zhen – sequence: 3 fullname: QIN Han-min – sequence: 4 fullname: SHA Xiao-peng |
Author_xml | – sequence: 1 fullname: 马淑华 – sequence: 2 fullname: 李立振 – sequence: 3 fullname: 秦汉民 – sequence: 4 fullname: 沙晓鹏 |
BookMark | eNrjYmDJy89LZWBQNTTQMzQyMLPQz9LLLC7O0zM0MDDVNTYwMtMzMjAy0TM01AMKsDBwwsU5GHiLizOTDAwMLE3MTY0sORlsn87f9WRXX0CAbkBmcr5LaoluRPDzWS3Ppux8sX_2y8lzn87rfjZ3wouFK17OXfR8z66XM7c_W9zwbGv383XTn22eysPAmpaYU5zKC6W5GULdXEOcPXR9_N09nR19dIsNDYxMdY2MLBNTzQyMklJMEg1SLS2TLcwNLIxMTEySDAwtDdMMTVPNLE2NgNAg2dg0zczUMjnNKCk51dwoxSTVItkkyZibQR1ibnliXlpiXnp8Vn5pUR7QxviUpJSKiiSQdw1BvjQGAM8QXuk |
ClassificationCodes | TP391.4 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12068/j.issn.1005-3026.2024.11.005 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Improved Surface Defects Detection Algorithm for Aluminum Profiles Based on PP-PicoDet-XS |
EndPage | 1564 |
ExternalDocumentID | dbdxxb202411005 |
GrantInformation_xml | – fundername: 河北省自然科学基金资助项目 funderid: (F2021501021) |
GroupedDBID | -03 2B. 4A8 5XA 5XD 92E 92I 93N ABDBF ABJNI ACGFS ACUHS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 EAD EAP EAS EOJEC ESX OBODZ PSX TCJ TGP U1G U5M |
ID | FETCH-LOGICAL-s1025-229ae602bd4a0e99c87082444b0191f15e69525250c35f659cf2bce72d4e8c4b3 |
ISSN | 1005-3026 |
IngestDate | Thu May 29 03:59:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | 损失函数 SimAM aluminum profiles loss function distillation 量化 蒸馏 defects detection 铝型材 缺陷检测 quantization |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1025-229ae602bd4a0e99c87082444b0191f15e69525250c35f659cf2bce72d4e8c4b3 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_dbdxxb202411005 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-15 |
PublicationDateYYYYMMDD | 2024-11-15 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | 东北大学学报(自然科学版) |
PublicationTitle_FL | Journal of Northeastern University(Natural Science) |
PublicationYear | 2024 |
Publisher | 东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004 |
Publisher_xml | – name: 东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004 |
SSID | ssib000947529 ssib051368049 ssib023167010 ssj0040330 ssib002039846 ssib004675270 ssib006703041 ssib002263414 ssib008679651 ssib001128993 |
Score | 2.4100776 |
Snippet | TP391.4; 铝型材在生产加工过程中会产生特征不明显和尺度大小不一等多类型的表面缺陷,针对现有人工抽检方法准确率低、实时性差、主观性强等问题,提出一种基于PP-PicoDet-XS的改进铝型材表面缺陷检测算法.改进的算法在主干网络中嵌入无参注意力SimAM,增强对深层有效特征的提取能力;使用SIoU(Scylla... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1557 |
Title | 基于PP-PicoDet-XS的改进铝型材表面缺陷检测算法 |
URI | https://d.wanfangdata.com.cn/periodical/dbdxxb202411005 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA_9ANGD-Inf9OA7lazJJDOZOXiY2U0oglKwhd7KJpvV0wp2C6UnD94KIqiIShX14smLiFgE_xm7bf8HD743ye6OUmoVljDMvHnvzXubeb9JZl487yrjJS9FO_dLXFD7cRlIvy3y0BdJqVhH5nGVYuPmLTG3GN9Y4ksTkz-dXUur_bxRrO97ruR_vIp16Fc6JfsPnh0xxQoso3_xih7G66F8DCkHlYHRkMZ0len8vD-Pvm2VfX_pNqQJKKyNIRWgkEJBKsFkoAykClQEqmVZpCCNpWmBCohGh6ClpWmBZsTHNK0YrFFgEiLWEe2SwILhtnsCOgVlmwxy5i7stfpJUE0SJ5uWjIOOQVcFlCKcggCpQXNIM5IrJakkkb8mKTgcI6w4HF3o9MImZYmrXqMnHKS1xl_TqjbsJFtorjGJHbxMLV9TmwMV1dmYxEqs1DMhyaJCACp0uRhGFiJ21sAoGq0uM_fhCovplGF1vNTeDoezzkh85VTbRNKM7YUGsprpAJ03a7VP6_7YZqx1cexk1IR8K43D2noV_cya9RDQgUNVZg-QPItIMqi-61wHNso4GwVVdoJh5KsSeQ7v8NCJY4gyEwcTUUahfeMtC4S0AZeENEZCGmTLBmXHDfgYaIy2f3byztpaTjSUsJBPetMsSWiTxbQ2LZM58D9OuAPfcW0glQtPg0hJNz0eEwjK3HPX2N2JR4LCmwP_bbLJ8VtxRlkhgjEc5mEkpH0LXSG7OIiiKrtJPcwjHgyNcO0gE9gDgb1uu3fHwa4LJ7zj9aJzRlczyElvYv3uKe-Yk4r0tHd9-83Wj61Hv80fOy8fDp5-3f3-au_J5vbrjcHm4923H_Y23-1829p78WXw_sHg88bOx-eDT8_OeItZutCc8-tPq_grIX3AmjHVLkXA8k7cDkqlCgzbEpF-nOOSL-yGOH8rzmjLQxHxruCq6LK8KBPWiUtZxHl01pvq3euV57yZJIzaAUJcRYfacf2Zs5IVLFKhRGYqCc97M_Xgl-upc2X5jz_Ahb-TXPSOju_PS95U__5qeRmXA_38Sv2v-QXGZrtO |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EPP-PicoDet-XS%E7%9A%84%E6%94%B9%E8%BF%9B%E9%93%9D%E5%9E%8B%E6%9D%90%E8%A1%A8%E9%9D%A2%E7%BC%BA%E9%99%B7%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E9%A9%AC%E6%B7%91%E5%8D%8E&rft.au=%E6%9D%8E%E7%AB%8B%E6%8C%AF&rft.au=%E7%A7%A6%E6%B1%89%E6%B0%91&rft.au=%E6%B2%99%E6%99%93%E9%B9%8F&rft.date=2024-11-15&rft.pub=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E7%A7%A6%E7%9A%87%E5%B2%9B%E5%88%86%E6%A0%A1+%E6%8E%A7%E5%88%B6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8C%97+%E7%A7%A6%E7%9A%87%E5%B2%9B+066004&rft.issn=1005-3026&rft.volume=45&rft.issue=11&rft.spage=1557&rft.epage=1564&rft_id=info:doi/10.12068%2Fj.issn.1005-3026.2024.11.005&rft.externalDocID=dbdxxb202411005 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdbdxxb%2Fdbdxxb.jpg |