花生含油量全基因组选择及近红外光谱筛选的育种技术探究

花生含油量对单位面积产油量至关重要.该性状受多个微效基因控制,但可用的紧密连锁标记十分有限,传统的分子标记辅助选择育种准确性不高.全基因组选择作为一种新的育种方法,可实现对数量性状的早期预测;近红外光谱分析可对作物品质性状(如含油量等)进行无损检测.通过两者优势互补,建立花生含油量全基因组选择和近红外光谱筛选联合的育种技术,探讨影响花生含油量全基因组选择预测准确性的因素,为花生分子育种奠定理论基础.本研究以 216 个重组自交系为材料构建训练群体;分别以 139、464 和 505 株 F2、F3 和 F4 为材料构建育种群体;利用自主开发的"PeanutGBTS40K"液...

Full description

Saved in:
Bibliographic Details
Published in作物学报 Vol. 50; no. 4; pp. 969 - 980
Main Authors 鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄
Format Journal Article
LanguageChinese
Published 广东省农业科学院作物研究所/广东省农作物遗传改良重点实验室/国家油料作物改良中心南方花生分中心,广东广州 510640 2024
Subjects
Online AccessGet full text
ISSN0496-3490
DOI10.3724/SP.J.1006.2024.34115

Cover

Loading…
Abstract 花生含油量对单位面积产油量至关重要.该性状受多个微效基因控制,但可用的紧密连锁标记十分有限,传统的分子标记辅助选择育种准确性不高.全基因组选择作为一种新的育种方法,可实现对数量性状的早期预测;近红外光谱分析可对作物品质性状(如含油量等)进行无损检测.通过两者优势互补,建立花生含油量全基因组选择和近红外光谱筛选联合的育种技术,探讨影响花生含油量全基因组选择预测准确性的因素,为花生分子育种奠定理论基础.本研究以 216 个重组自交系为材料构建训练群体;分别以 139、464 和 505 株 F2、F3 和 F4 为材料构建育种群体;利用自主开发的"PeanutGBTS40K"液相芯片进行基因分型,开展含油量全基因组选择育种模型分析;通过联合全基因组选择和近红外光谱筛选技术,开展花生含油量性状的育种应用,并评价其育种效果.结果显示,对训练群体进行基因分型后,总共获得 30,355 个高质量 SNPs,并用于 11 个全基因组预测的模型选择分析.含油量预测准确性最高的模型为rrBLUP,其次是randomforest和svmrbf.以重组自交系为预测群体,F2、F3 和F4 各世代含油量的预测准确性分别为 0.116、0.128 和 0.119;以重组自交系叠加上一轮的育种群体为预测群体,各世代含油量的预测准确性分别为0.116、0.131 和 0.160.全基因组选择联合近红外筛选要比单独的全基因组选择对各世代的含油量选择效果提高 1.8%、2.7%和 3.4%;与单独的近红外筛选相比,差异不显著(0.10%、0.06%和 0.07%);而近红外筛选与全基因组选择相比,含油量可显著提高 1.7%、2.6%和 3.3%.通过联合全基因组选择和近红外光谱筛选育种,F3 和F4 分别比F2 的含油量提高1.2%和1.0%.F4 总共获得16个入选改良株系,有10个株系含油量≥55.0%,其中2个株系(SF4_201和SF4_379)的理论产量分别比对照增产 7.0%和 11.1%.本研究通过建立花生含油量性状的全基因组选择-近红外光谱筛选联合育种技术,可有效实现花生含油量性状的遗传改良.
AbstractList 花生含油量对单位面积产油量至关重要.该性状受多个微效基因控制,但可用的紧密连锁标记十分有限,传统的分子标记辅助选择育种准确性不高.全基因组选择作为一种新的育种方法,可实现对数量性状的早期预测;近红外光谱分析可对作物品质性状(如含油量等)进行无损检测.通过两者优势互补,建立花生含油量全基因组选择和近红外光谱筛选联合的育种技术,探讨影响花生含油量全基因组选择预测准确性的因素,为花生分子育种奠定理论基础.本研究以 216 个重组自交系为材料构建训练群体;分别以 139、464 和 505 株 F2、F3 和 F4 为材料构建育种群体;利用自主开发的"PeanutGBTS40K"液相芯片进行基因分型,开展含油量全基因组选择育种模型分析;通过联合全基因组选择和近红外光谱筛选技术,开展花生含油量性状的育种应用,并评价其育种效果.结果显示,对训练群体进行基因分型后,总共获得 30,355 个高质量 SNPs,并用于 11 个全基因组预测的模型选择分析.含油量预测准确性最高的模型为rrBLUP,其次是randomforest和svmrbf.以重组自交系为预测群体,F2、F3 和F4 各世代含油量的预测准确性分别为 0.116、0.128 和 0.119;以重组自交系叠加上一轮的育种群体为预测群体,各世代含油量的预测准确性分别为0.116、0.131 和 0.160.全基因组选择联合近红外筛选要比单独的全基因组选择对各世代的含油量选择效果提高 1.8%、2.7%和 3.4%;与单独的近红外筛选相比,差异不显著(0.10%、0.06%和 0.07%);而近红外筛选与全基因组选择相比,含油量可显著提高 1.7%、2.6%和 3.3%.通过联合全基因组选择和近红外光谱筛选育种,F3 和F4 分别比F2 的含油量提高1.2%和1.0%.F4 总共获得16个入选改良株系,有10个株系含油量≥55.0%,其中2个株系(SF4_201和SF4_379)的理论产量分别比对照增产 7.0%和 11.1%.本研究通过建立花生含油量性状的全基因组选择-近红外光谱筛选联合育种技术,可有效实现花生含油量性状的遗传改良.
Abstract_FL Oil content is a crucial trait for the yield of oil per unit area in peanut.This trait is controlled by multiple minor genes,and its avaliable tightly linked markers are very limited,resulting in low breeding accuracy in traditional molecular marker assisted selection.Genomic selection(GS),as a new breeding method,could achieve early prediction of quantitative traits.Near infrared ray(NIR)technology can non-destructively detect seed quality traits,such as oil content.By combining the advantages of the two breeding technologies,we have established a breeding technology that combined GS and NIR for breeding peanut oil content,and explored the factors that affected the accuracy of GS for peanut oil content.This study lays a theoretical foundation for peanut molecular breeding.Here,a total of 216 recombinant inbred lines were used as a training population.The F2(139),F3(464),and F4(505)were used to construct the breeding populations.Genotyping was carried out using the self-developed"Pea-nutGBTS40K"liquid chip.The breeding application of oil content was conducted using a GS and NIR jointed breeding technol-ogy,and evaluated its breeding effects.The results showed that after genotyping the training population,a total of 30,355 high-quality SNPs were obtained,and used for 11 GS models selection analyses.The rrBLUP model showed the highest accuracy,followed by randomforest and svmrbf.The GS prediction accuracy of F2,F3,and F4 was 0.116,0.128,and 0.119,respectively,using recombinant inbred lines as the training population.Accordingly,the prediction accuracy was 0.116,0.131,and 0.160,re-spectively,using a superimposed training population.Compared with the GS,the GS-NIR can improve oil content by 1.8%,2.7%,and 3.4%for each generation.Compared with the NIR,there was no significant difference(0.1%,0.06%,and 0.07%).Compared with the GS,the NIR can significantly improve oil content by 1.7%,2.6%,and 3.3%for each generation.Through the combined technologies,compared to F2,the oil content of F3 and F4 increased by 1.2%and 1.0%,respectively.Finally,a total of 16 im-proved lines were obtained in F4,of which 10 lines had oil content≥55.0%.Among them,two lines(SF4_201 and SF4_379)had a theoretical yield increase of 7.0%and 11.1%,respectively,compared to the control variety.This study suggested that oil content could be effectively improved through GS combined with NIR in peanut.
Author 李海芬
陈小平
洪彦彬
梁炫强
鲁清
刘海燕
刘浩
王润风
李少雄
黄璐
AuthorAffiliation 广东省农业科学院作物研究所/广东省农作物遗传改良重点实验室/国家油料作物改良中心南方花生分中心,广东广州 510640
AuthorAffiliation_xml – name: 广东省农业科学院作物研究所/广东省农作物遗传改良重点实验室/国家油料作物改良中心南方花生分中心,广东广州 510640
Author_FL WANG Run-Feng
HUANG Lu
LI Hai-Fen
CHEN Xiao-Ping
LU Qing
LIU Hao
LIU Hai-Yan
LI Shao-Xiong
LIANG Xuan-Qiang
HONG Yan-Bin
Author_FL_xml – sequence: 1
  fullname: LU Qing
– sequence: 2
  fullname: LIU Hao
– sequence: 3
  fullname: LI Hai-Fen
– sequence: 4
  fullname: WANG Run-Feng
– sequence: 5
  fullname: HUANG Lu
– sequence: 6
  fullname: LIANG Xuan-Qiang
– sequence: 7
  fullname: CHEN Xiao-Ping
– sequence: 8
  fullname: HONG Yan-Bin
– sequence: 9
  fullname: LIU Hai-Yan
– sequence: 10
  fullname: LI Shao-Xiong
Author_xml – sequence: 1
  fullname: 鲁清
– sequence: 2
  fullname: 刘浩
– sequence: 3
  fullname: 李海芬
– sequence: 4
  fullname: 王润风
– sequence: 5
  fullname: 黄璐
– sequence: 6
  fullname: 梁炫强
– sequence: 7
  fullname: 陈小平
– sequence: 8
  fullname: 洪彦彬
– sequence: 9
  fullname: 刘海燕
– sequence: 10
  fullname: 李少雄
BookMark eNotj81Kw0AAhPdQwVr7Bt49Je5vkj1K8ZeignoumyYriiRgKBVPRVqkEa2CeLBCpQhaRLQ9CNaDT7PZ9C2MKAzMYeCbmRmQC8LAB2AOQZPYmC5sb5nrJoLQMjHE1CQUIZYDeUi5ZRDK4TQoRtG-CwmyKXQcngcbaTzUNz119ZKMPidnHdV6Vr2x6j7or-ak0U7OB6oTp9_XetxXj7eq1U7fh_q1m0X6rpmejvTTRRI3kvu35LKvBx-zYEqKw8gv_nsB7C4v7ZRWjfLmylppsWxEKBtmeIhzRhizbGRjD0Ehq8jB0sKE-1IK7nMkbEvgqnRkJkd6DEubURf6LpIWIwUw_8eti0CKYK9yENaOgqyxclIL68fu731IIaLkB6Tdbao
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3724/SP.J.1006.2024.34115
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Research on oil content screen with genomic selection and near infrared ray in peanut(Arachis hypogaea L.)
EndPage 980
ExternalDocumentID zuowxb202404014
GroupedDBID -04
23M
2B.
4.4
4A8
5GY
5XA
5XE
92G
92I
93N
AAHBH
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CS3
CW9
EBS
EJD
GROUPED_DOAJ
P2P
PSX
RIG
TCJ
TGD
U1G
U5N
ID FETCH-LOGICAL-s1024-d199535567172d10afc182f6239effa9e91a76a2cf8ff8f8fd52f754b0eb1f653
ISSN 0496-3490
IngestDate Thu May 29 04:05:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords near infrared ray
genomic selection
peanut(Arachis hypogaea L.)
基因组育种值
含油量
genomic breeding value
全基因组选择
近红外光谱分析
花生
oil content
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1024-d199535567172d10afc182f6239effa9e91a76a2cf8ff8f8fd52f754b0eb1f653
PageCount 12
ParticipantIDs wanfang_journals_zuowxb202404014
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 作物学报
PublicationTitle_FL Acta Agronomica Sinica
PublicationYear 2024
Publisher 广东省农业科学院作物研究所/广东省农作物遗传改良重点实验室/国家油料作物改良中心南方花生分中心,广东广州 510640
Publisher_xml – name: 广东省农业科学院作物研究所/广东省农作物遗传改良重点实验室/国家油料作物改良中心南方花生分中心,广东广州 510640
SSID ssib031740889
ssib002263356
ssib051369771
ssj0037550
ssib001101042
Score 2.340647
Snippet ...
SourceID wanfang
SourceType Aggregation Database
StartPage 969
Title 花生含油量全基因组选择及近红外光谱筛选的育种技术探究
URI https://d.wanfangdata.com.cn/periodical/zuowxb202404014
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1XryIouI3PTgnSU0mk8nMMdlNKAWLYAu9lWw20dMWbIvSU5EWaUWrIB6sUCmCFhFtD4L14F_icT_6X_jeS3Y37C74ASWk896893vvzWbmDfNhGDc8KLZTJzFlkipTONI2Y0vXzbRec7AH1VmG85C3Z-TUnJied-fHxn-VVi2tLNcmk9WR-0r-J6pQBnHFXbL_ENmeUCiAd4gvPCHC8PyrGLNQMeWzwGahx7RgOmKhy7TF_ICFkgWcBZqFmkHCr4ikXOYr4olY4NNLwHwLqwcBU4KYLaY0VldA0lQrQi2gK4iYJl1Q1-dI8kGpLCRjLeCxCjx-FYX3BQJCn1QAZo7YkAeAVUmXj2zwoivMj6gkJBUeYghkeQzNQsGCKnICFSTnIEGdLwtRvtttR6gfVCmb_AGaSxRArJhWRIH6uk8BGFUEkFMCr_Bz_5hK0hyih5BFkmYA4kBheRqF9ydQUR0EAzyI6FWBHp4IDZCQ5QXJL1yj7ZJhmmlNHhk23sMQQvi7ziIvkN959Nd6B2RqZNAekSrURCSqCCjGyBN1G1aVauVNDdCGTIfkDIhopSiBVpIjgQYBivLCHGfRRiU2IzBwBJJhvWSIT3LALuWQIVVCS3IK5qEfBoQb7B2uziujvNQroRagw5vQr8j80K-i5xRamo7I76HtdvOuVfqciVKfrfO7gorhn84vFhscWTgeR1fdvTM5jQuLcHETF5MwBMw3Iw-c2b66svjwUQ1ZoI-0xQnjJIcs1irN-FC2YuNkSGlRA5dO6bRIGNkLXITY_d-1HQnZWm8Fm-O5dAF1z9p8ZzAivTUKJ21LbGRx415pBD17xjhdpL4Tfv4dO2uMrd4_Z8x0tg7ar3abLz61Dr8fP9lubnxs7h41d961f6wfr222nu43t7c6P1-2j_aa7183NzY7Xw_an3eA1H6z3nl82P7wrLW11nr7pfV8r73_7bwxF4WzlSmzuOPFXILURph1PCICch7pQSZVt604S2zFM0jKdJplsU61HXsy5kmmMvhTWd3lmeeKmgWDzEy6zgVjvLHYSC8aEzqppw4MSbKsnggleGzxuKZEZvMkdVIhLxkThf0LxTd8aWEgUJf_zHLFOIXv-SzsVWN8-cFKeg3ykuXadYrub6cp4VY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%8A%B1%E7%94%9F%E5%90%AB%E6%B2%B9%E9%87%8F%E5%85%A8%E5%9F%BA%E5%9B%A0%E7%BB%84%E9%80%89%E6%8B%A9%E5%8F%8A%E8%BF%91%E7%BA%A2%E5%A4%96%E5%85%89%E8%B0%B1%E7%AD%9B%E9%80%89%E7%9A%84%E8%82%B2%E7%A7%8D%E6%8A%80%E6%9C%AF%E6%8E%A2%E7%A9%B6&rft.jtitle=%E4%BD%9C%E7%89%A9%E5%AD%A6%E6%8A%A5&rft.au=%E9%B2%81%E6%B8%85&rft.au=%E5%88%98%E6%B5%A9&rft.au=%E6%9D%8E%E6%B5%B7%E8%8A%AC&rft.au=%E7%8E%8B%E6%B6%A6%E9%A3%8E&rft.date=2024&rft.pub=%E5%B9%BF%E4%B8%9C%E7%9C%81%E5%86%9C%E4%B8%9A%E7%A7%91%E5%AD%A6%E9%99%A2%E4%BD%9C%E7%89%A9%E7%A0%94%E7%A9%B6%E6%89%80%2F%E5%B9%BF%E4%B8%9C%E7%9C%81%E5%86%9C%E4%BD%9C%E7%89%A9%E9%81%97%E4%BC%A0%E6%94%B9%E8%89%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2F%E5%9B%BD%E5%AE%B6%E6%B2%B9%E6%96%99%E4%BD%9C%E7%89%A9%E6%94%B9%E8%89%AF%E4%B8%AD%E5%BF%83%E5%8D%97%E6%96%B9%E8%8A%B1%E7%94%9F%E5%88%86%E4%B8%AD%E5%BF%83%2C%E5%B9%BF%E4%B8%9C%E5%B9%BF%E5%B7%9E+510640&rft.issn=0496-3490&rft.volume=50&rft.issue=4&rft.spage=969&rft.epage=980&rft_id=info:doi/10.3724%2FSP.J.1006.2024.34115&rft.externalDocID=zuowxb202404014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzuowxb%2Fzuowxb.jpg