基于卷积神经网络的荷载大小与位置同步识别
TU311.3; 结构健康监测和状态评估中现有大多数研究均需要精确的荷载作用位置或详细的荷载时程,为了同时获得荷载大小和位置,构建并训练了同时具备分类和回归能力的两分支卷积神经网络,建立了融合分类问题和回归问题的损失函数,提取结构响应与荷载大小、结构响应与荷载位置间的映射关系.通过数值简支梁算例和三层试验框架验证了该方法识别结构荷载大小和位置的精度.结果表明:噪声条件下数值模型的荷载识别误差在8%以内,荷载位置识别准确率在95%以上;实际结构的荷载识别误差在18%以内,荷载位置识别准确率为100%.两分支卷积神经网络可以很好地同时识别荷载大小和位置....
Saved in:
Published in | 东南大学学报(自然科学版) Vol. 54; no. 1; pp. 110 - 116 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
华中科技大学土木与水利工程学院,武汉 430074%中铁第四勘察设计院集团有限公司,武汉 430063
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-0505 |
DOI | 10.3969/j.issn.1001-0505.2024.01.014 |
Cover
Abstract | TU311.3; 结构健康监测和状态评估中现有大多数研究均需要精确的荷载作用位置或详细的荷载时程,为了同时获得荷载大小和位置,构建并训练了同时具备分类和回归能力的两分支卷积神经网络,建立了融合分类问题和回归问题的损失函数,提取结构响应与荷载大小、结构响应与荷载位置间的映射关系.通过数值简支梁算例和三层试验框架验证了该方法识别结构荷载大小和位置的精度.结果表明:噪声条件下数值模型的荷载识别误差在8%以内,荷载位置识别准确率在95%以上;实际结构的荷载识别误差在18%以内,荷载位置识别准确率为100%.两分支卷积神经网络可以很好地同时识别荷载大小和位置. |
---|---|
AbstractList | TU311.3; 结构健康监测和状态评估中现有大多数研究均需要精确的荷载作用位置或详细的荷载时程,为了同时获得荷载大小和位置,构建并训练了同时具备分类和回归能力的两分支卷积神经网络,建立了融合分类问题和回归问题的损失函数,提取结构响应与荷载大小、结构响应与荷载位置间的映射关系.通过数值简支梁算例和三层试验框架验证了该方法识别结构荷载大小和位置的精度.结果表明:噪声条件下数值模型的荷载识别误差在8%以内,荷载位置识别准确率在95%以上;实际结构的荷载识别误差在18%以内,荷载位置识别准确率为100%.两分支卷积神经网络可以很好地同时识别荷载大小和位置. |
Abstract_FL | Most of the existing research in structural health monitoring and status assessment requires accurate load action locations or detailed dynamic load schedules.To simultaneously obtain the size and location of the dynamic load,a two-branch convolutional neural network with both classification and regression capabili-ties is constructed and trained.A loss function that integrates classification and regression problems is estab-lished to capture the mapping relationship between structural response and load magnitude,as well as be-tween structural response and load location.The identification accuracy of load magnitude and location is demonstrated through numerical cantilever beam examples and a three-layer experimental framework.Results show that under noisy conditions,the error in load magnitude identification of the numerical model is within 8%,and the accuracy of load location identification is above 95%.For real structures,the error in load magnitude identification is within 18%,and the accuracy of load location identification is 100%.The two-branch convolutional neural network can effectively identify both the magnitude and location of dynamic loads. |
Author | 于虹 翁顺 赵丹阳 陈志丹 郭街震 颜永逸 |
AuthorAffiliation | 华中科技大学土木与水利工程学院,武汉 430074%中铁第四勘察设计院集团有限公司,武汉 430063 |
AuthorAffiliation_xml | – name: 华中科技大学土木与水利工程学院,武汉 430074%中铁第四勘察设计院集团有限公司,武汉 430063 |
Author_FL | Chen Zhidan Zhao Danyang Yu Hong Weng Shun Guo Jiezhen Yan Yongyi |
Author_FL_xml | – sequence: 1 fullname: Weng Shun – sequence: 2 fullname: Guo Jiezhen – sequence: 3 fullname: Yu Hong – sequence: 4 fullname: Chen Zhidan – sequence: 5 fullname: Yan Yongyi – sequence: 6 fullname: Zhao Danyang |
Author_xml | – sequence: 1 fullname: 翁顺 – sequence: 2 fullname: 郭街震 – sequence: 3 fullname: 于虹 – sequence: 4 fullname: 陈志丹 – sequence: 5 fullname: 颜永逸 – sequence: 6 fullname: 赵丹阳 |
BookMark | eNo9j89Kw0AYxPdQwVr7FoKnxG-_ZDdZ8CLFf1DwoueSzSbSIltwEfsAIh5sq1cRvVh6EK23SkveJnHzGEYUYWBgDjPzWyM13dcJIRsUXE9wsdVzu8ZolwJQBxgwFwF9F2glv0bq__kqaRrTlUARBSDyOtkunhf5YlQM53Y6s5Mnuxzb7N4uH-3DVTmcl1lWvEyLj3H-Ocqzoc3ei7vbr7dJObsubl7XyUoanZmk-ecNcrK3e9w6cNpH-4etnbZjaPXDiVDxABULEKXPGDKOSZR4ccoTlLEKKYQeAktFAJEUNAiV70umeCrCWEkAr0E2f3svI51G-rTT61-c62qxo7QaDOQPLdCK1fsGM41jyA |
ClassificationCodes | TU311.3 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-0505.2024.01.014 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Synchronized identification of dynamic load magnitude and location based on convolutional neural network |
EndPage | 116 |
ExternalDocumentID | dndxxb202401014 |
GrantInformation_xml | – fundername: (国家重点研发计划); (国家自然科学基金); (国家自然科学基金); (华中科技大学交叉研究支持计划资助项目); (中铁第四勘察设计院集团有限公司资助项目); (中铁第四勘察设计院集团有限公司资助项目) funderid: (国家重点研发计划); (国家自然科学基金); (国家自然科学基金); (华中科技大学交叉研究支持计划资助项目); (中铁第四勘察设计院集团有限公司资助项目); (中铁第四勘察设计院集团有限公司资助项目) |
GroupedDBID | 2B. 4A8 92I 93N ADMLS ALMA_UNASSIGNED_HOLDINGS PSX TCJ |
ID | FETCH-LOGICAL-s1024-a2d672d5722b4552562eae3cf6e2bcd81083205f970ab9178d44b5d6f98cdb003 |
ISSN | 1001-0505 |
IngestDate | Thu May 29 04:08:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | convolutional neural network(CNN) deep learning 卷积神经网络 荷载识别 深度学习 加速度响应 acceleration response load identification |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1024-a2d672d5722b4552562eae3cf6e2bcd81083205f970ab9178d44b5d6f98cdb003 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_dndxxb202401014 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 东南大学学报(自然科学版) |
PublicationTitle_FL | Journal of Southeast University(Natural Science Edition) |
PublicationYear | 2024 |
Publisher | 华中科技大学土木与水利工程学院,武汉 430074%中铁第四勘察设计院集团有限公司,武汉 430063 |
Publisher_xml | – name: 华中科技大学土木与水利工程学院,武汉 430074%中铁第四勘察设计院集团有限公司,武汉 430063 |
SSID | ssib012290226 ssib002258162 ssib036435511 ssib008679709 ssib023167012 ssib000947520 ssib021009659 ssib057620145 ssib000969306 ssib001128997 ssib006563446 ssib002039847 ssib006703054 ssib051368071 ssib004675274 |
Score | 2.379443 |
Snippet | TU311.3;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 110 |
Title | 基于卷积神经网络的荷载大小与位置同步识别 |
URI | https://d.wanfangdata.com.cn/periodical/dndxxb202401014 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB_qFsSLKCp-00Nzkq2TzCSTgJfJ7pQi6sUWeivzqact2BZKTx5EPNhWryJ6sfQgWm-Vlv1vuk7_DN_LpLtpqZ8wDG-zL-_93nvZfXkhk_G8SZXzyM9L2c6rDAoU5at2liraVkUVqCpP8UgW3G3xSMzMhffn-fxY67mza2llOZvK1059ruR_ogptEFd8SvYfIjsUCg1AQ3zhDhGG-1_FmCScqGmiY5KEeJcJtsgu0RFJIhLDNW0IYEuQ0JpI06K7RFHbojpIKOgekkQedZfIAxcIjEMUBYT2TXfQJY2uEBmAvxEYG-0KeECgIHEX9YIcwCCFAQa0dmfDVhQCMLBVdEwdShAOIYiMjUwwuYPSEC1YFyMAAK-FtRpNG_aCr5RhbnoNFz4MaoAGvIrElIxWLLBBBtgf0VMDSyHKUdJ2HA74FdHK7awahRzlY2djpWWxKyxstLZqjbcOlUbv0Axjs_RP9wtAgvADDxCxdAIjMFQ6PHK6MljMOEDJwKMdOQZvzODHdhQ242tNwVl3wgCnf4RxBxx0CIzfQFYHL4Si8UJ9QBjbIewITuK40IklYjrSh4S2QwMIbDGWQLgaHmXMltyqgKEHAH6J0mawJsGaLXzc524Gbo4RP_ZP06RTarc8l_aTOC3pB0ook_RRwdRQwRSG0hzJ2zylfOJY9aJXrK5myGNeV33GG2dRRHnLG4-7Dx88dkqQMOJuSaXw5aHukYu4ZOEsefiBcnceQL6UVLhH6IE4p-SCeipwl2SEScGj7_FATOeIRYrvZ3BKJkYR0agkYXiyhVPCBFBxcOcIQk4DIZ0SkMNkCHcWmE0h1nNnvUnr1ru_c6p5zLFXpb0nzox89oJ33pbSE3Hzv3jRG1t7esm7N_i4d7C3MVjfrbd36q0P9f5m3X9b77-v3704XN897PcHn7YH3zYPvm8c9Nfr_tfBm9c_vmwd7rwcvPp82ZubTmY7M237hpj2EhRGYTtlhYhYwSPGspBzKN9YmZZBXomSZXkhKRSYzOcVeDDNFI1kEYYZL0SlZF7ghOaK1-ot9sqr3kQFrSUUa0KmPKwCKTNVslzQKi1LFQp2zZuw1i7YDLC0cGIMXf8zyw3vHNLNGu5Nr7X8bKW8BVXNcnbbDryf_ovqqA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E8%8D%B7%E8%BD%BD%E5%A4%A7%E5%B0%8F%E4%B8%8E%E4%BD%8D%E7%BD%AE%E5%90%8C%E6%AD%A5%E8%AF%86%E5%88%AB&rft.jtitle=%E4%B8%9C%E5%8D%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E7%BF%81%E9%A1%BA&rft.au=%E9%83%AD%E8%A1%97%E9%9C%87&rft.au=%E4%BA%8E%E8%99%B9&rft.au=%E9%99%88%E5%BF%97%E4%B8%B9&rft.date=2024&rft.pub=%E5%8D%8E%E4%B8%AD%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%9C%9F%E6%9C%A8%E4%B8%8E%E6%B0%B4%E5%88%A9%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%AD%A6%E6%B1%89+430074%25%E4%B8%AD%E9%93%81%E7%AC%AC%E5%9B%9B%E5%8B%98%E5%AF%9F%E8%AE%BE%E8%AE%A1%E9%99%A2%E9%9B%86%E5%9B%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%AD%A6%E6%B1%89+430063&rft.issn=1001-0505&rft.volume=54&rft.issue=1&rft.spage=110&rft.epage=116&rft_id=info:doi/10.3969%2Fj.issn.1001-0505.2024.01.014&rft.externalDocID=dndxxb202401014 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdndxxb%2Fdndxxb.jpg |