一种改进的MRF点目标检测算法

TP391.4; 针对复杂背景下点目标的单帧检测,明确提出有效像元的检测,基于点目标的局部相关性以及目标和背景的局部差异,提出了一种改进的基于马尔可夫随机场(Markov Random Field,MRF)的点目标检测算法.该算法依据一种基于复杂背景可分性度量的信杂比(Signal to Clutter Ratio,SCR)准则对MRF进行迭代优化的初始配置.在此基础上,改进了MRF标记场的先验概率模型,设计了一种基于欧式空间度量的MRF先验概率能量函数,构造了MRF对欧式空间距离的标记场概率响应模型,并通过高阶能量函数提高了目标概率对邻域标记变化的响应能力.分析结果表明:该算法在结构化背景中...

Full description

Saved in:
Bibliographic Details
Published in红外与毫米波学报 Vol. 37; no. 2; pp. 212 - 218
Main Authors 刘丰轶, 胡勇, 饶鹏, 巩彩兰
Format Journal Article
LanguageChinese
Published 中国科学院红外探测与成像技术重点实验室(上海技术物理研究所),上海 200083 01.04.2018
中国科学院大学,北京 10000%中国科学院上海技术物理研究所,上海 200083
中国科学院上海技术物理研究所,上海 200083
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TP391.4; 针对复杂背景下点目标的单帧检测,明确提出有效像元的检测,基于点目标的局部相关性以及目标和背景的局部差异,提出了一种改进的基于马尔可夫随机场(Markov Random Field,MRF)的点目标检测算法.该算法依据一种基于复杂背景可分性度量的信杂比(Signal to Clutter Ratio,SCR)准则对MRF进行迭代优化的初始配置.在此基础上,改进了MRF标记场的先验概率模型,设计了一种基于欧式空间度量的MRF先验概率能量函数,构造了MRF对欧式空间距离的标记场概率响应模型,并通过高阶能量函数提高了目标概率对邻域标记变化的响应能力.分析结果表明:该算法在结构化背景中的性能更优,相比于传统Potts模型在目标辐射维度的检测能力更强,是一种鲁棒性更强的检测算法.
AbstractList TP391.4; 针对复杂背景下点目标的单帧检测,明确提出有效像元的检测,基于点目标的局部相关性以及目标和背景的局部差异,提出了一种改进的基于马尔可夫随机场(Markov Random Field,MRF)的点目标检测算法.该算法依据一种基于复杂背景可分性度量的信杂比(Signal to Clutter Ratio,SCR)准则对MRF进行迭代优化的初始配置.在此基础上,改进了MRF标记场的先验概率模型,设计了一种基于欧式空间度量的MRF先验概率能量函数,构造了MRF对欧式空间距离的标记场概率响应模型,并通过高阶能量函数提高了目标概率对邻域标记变化的响应能力.分析结果表明:该算法在结构化背景中的性能更优,相比于传统Potts模型在目标辐射维度的检测能力更强,是一种鲁棒性更强的检测算法.
Abstract_FL This paper focuses on point target detection with single frame under complicated background and suggests the conception of valid pixel detection.A modified point target detection method based on Markov Random Field was proposed in terms of local correlation of point target and local difference of target and background.This algorithm conducted initial configuration of iterative optimization for MRF by a signal-to-clutter ratio criterion based on complex background separability measure.Moreover,the prior probability model of MRF label field was improved by designing a new prior probability energy function based on Euclidean metric:firstly the label field probability response model of MRF to Euclid-ean space distance was built;secondly the response ability of the target probability to neighborhood la-bel change was improved by a higher order energy function.The results indicate that:the performance of the detection algorithm in structured background is better;the target's radiation-dimension detection ability of the modified label field prior probability model is more vigorous compared to the traditional Potts model.The proposed algorithm is a more robust one.
Author 刘丰轶
胡勇
饶鹏
巩彩兰
AuthorAffiliation 中国科学院上海技术物理研究所,上海 200083;中国科学院红外探测与成像技术重点实验室(上海技术物理研究所),上海 200083;中国科学院大学,北京 10000%中国科学院上海技术物理研究所,上海 200083;中国科学院红外探测与成像技术重点实验室(上海技术物理研究所),上海 200083
AuthorAffiliation_xml – name: 中国科学院上海技术物理研究所,上海 200083;中国科学院红外探测与成像技术重点实验室(上海技术物理研究所),上海 200083;中国科学院大学,北京 10000%中国科学院上海技术物理研究所,上海 200083;中国科学院红外探测与成像技术重点实验室(上海技术物理研究所),上海 200083
Author_FL RAO Peng
HU Yong
GONG Cai-Lan
LIU Feng-Yi
Author_FL_xml – sequence: 1
  fullname: LIU Feng-Yi
– sequence: 2
  fullname: HU Yong
– sequence: 3
  fullname: RAO Peng
– sequence: 4
  fullname: GONG Cai-Lan
Author_xml – sequence: 1
  fullname: 刘丰轶
– sequence: 2
  fullname: 胡勇
– sequence: 3
  fullname: 饶鹏
– sequence: 4
  fullname: 巩彩兰
BookMark eNrjYmDJy89LZWBQNTTQMzS0NDfSz9LLLC7O0zM0MDDUtTQwNNEzMjC00DMw0gOyWRg44eIcDLzFxZlJBsYWBuYmZmaWnAzqT3Y0PF_e-2zKzhf7Zz-f1eIb5Pa8aefz2eueLWh_trjh2dbu5-umP9s8lYeBNS0xpziVF0pzM4S6uYY4e-j6-Lt7Ojv66BYbGhiZ6FoYmJhYGCeaGiSlmZqlpKSmmVsamaUYmxtYWCanWZobm6UlmhiaGluapxgaJqVZJqeYWhgbJZsnGaRaJBkkpyYZczOoQ8wtT8xLS8xLj8_KLy3KA9oYn1FemZGbBPKYAZAwMQYAOlVTMQ
ClassificationCodes TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11972/j.issn.1001-9014.2018.02.014
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
DocumentTitle_FL Modified point target detection algorithm based on Markov random field
EndPage 218
ExternalDocumentID hwyhmb201802014
GrantInformation_xml – fundername: 装备预先研究项目; 中国科学院上海技术物理研究所创新专项Supported by Equipment Advanced Research Project,the Special Fund of Innovation project of Shanghai Institute of Technical Physics of the Chinese Academic of Sciences
  funderid: (30502030101); (CX-5)Supported by Equipment Advanced Research Project,the Special Fund of Innovation project of Shanghai Institute of Technical Physics of the Chinese Academic of Sciences
GroupedDBID 2B.
2C0
4A8
5VS
5XA
5XJ
92H
92I
93N
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CW9
DU5
GROUPED_DOAJ
IPNFZ
KQ8
OK1
PSX
RIG
RNS
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1024-804483a50bf56ddef7926d37089cf9736fa415397d11bf9cd5832c7b0e8b0ceb3
ISSN 1001-9014
IngestDate Wed Nov 06 04:25:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords MRF
iterative optimization
point target
点目标
迭代优化
马尔可夫随机场
信杂比
valid pixel
signal to clutter ratio
有效像元
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1024-804483a50bf56ddef7926d37089cf9736fa415397d11bf9cd5832c7b0e8b0ceb3
PageCount 7
ParticipantIDs wanfang_journals_hwyhmb201802014
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationTitle 红外与毫米波学报
PublicationTitle_FL Journal of Infrared and Millimeter Waves
PublicationYear 2018
Publisher 中国科学院红外探测与成像技术重点实验室(上海技术物理研究所),上海 200083
中国科学院大学,北京 10000%中国科学院上海技术物理研究所,上海 200083
中国科学院上海技术物理研究所,上海 200083
Publisher_xml – name: 中国科学院上海技术物理研究所,上海 200083
– name: 中国科学院红外探测与成像技术重点实验室(上海技术物理研究所),上海 200083
– name: 中国科学院大学,北京 10000%中国科学院上海技术物理研究所,上海 200083
SSID ssib038074669
ssj0039469
ssib051375082
ssib007291925
ssib002806809
ssib023167203
ssib008143719
ssib000862495
Score 2.2195144
Snippet TP391.4; 针对复杂背景下点目标的单帧检测,明确提出有效像元的检测,基于点目标的局部相关性以及目标和背景的局部差异,提出了一种改进的基于马尔可夫随机场(Markov Random Field,MRF)的点目标检测算法.该算法依据一种基于复杂背景可分性度量的信杂比(Signal to Clutter...
SourceID wanfang
SourceType Aggregation Database
StartPage 212
Title 一种改进的MRF点目标检测算法
URI https://d.wanfangdata.com.cn/periodical/hwyhmb201802014
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-1gnjxW_xmDwZPWzNfyctxsjtLUSooLfRWZmZ37KUr2C1iT0UED-JNEexF8OCtFxHsyX9GdsW_wvcy2dnUFr8uS0hefsl7bzLvvZ3khbGbOo4gqQrRRtOh2nEexW2oYlxXZRFIEH1cUhQoLt2TiyvxndVkde7YD2_X0taoWCi3jzxX8j9axTrUK52S_QfNNqBYgWXUL_6ihvH3r3TMs5gboM0KmeKp4tDlmeQaKzXPgJse14aadMohXnrQozKEtlVRU5oRfSo4KFuILJTkJuFgOyKBtk0m4vUtlVNHllpNytOQZwlPY67ldDI1Zo-nFsEE1LdGcMRdnkqqAeyeTBVOLQBcg4MxwnLQ5UbOSBAdUQJLa_jMhPJMIxSSUgG5g54Pa5APbQtdVwAsC___jgC8bTL0hLpZ4FyRHCWFXWsR68DjQXOtLVeHZSFJEFTTSNOTDjEq7ERQ4j0ni1r0ukOyQ2So1dkoLLHKyCyrSNxxNThcOJUZgtTDGXUUJkJpKwBFo4O0HAl6XDIrIVNPW1OvUOPaOwxLCShFfSWQs2S0V46-kfumrs6v45Z0eMBuhZ4LFNYm8bB11Sq05pVGWGhGoA2SYDPfutEOJjBff_J0faMgGgxN6M754yEaBbJGd-_7oYB016DPvvj7qeUwCAy0Z3sAHX01S0UYUkYHb0cB3aMQS9m0J0GEvjE0qeUiHdvrLhsmTjA-ZfH27xi0h_uGVT586Pmhy2fYKRdAttL6bXCWzW2vn2OnXTDZcqZ68zy79e3LzuTjq_Hr_e9fdyfvnuPynzzbn-zujd-_GH_YGX9-Odl7O_705gJb6WXLncW2uxWlvYnBAL5KRRxDlCeiqBKJzkmldCj7kRKgy0qrSFY5OuUYZvSDoKh02U_QaJeqEAMoRDkoootsfvhoOLjEWgH0dRHS6XJ05DFyywdowvMcJECJYV1ymbUcr2vurbe59os2r_yZ5Co7OVvH19j86PHW4Dp68qPihn0EfgIaHKPw
link.rule.ids 315,783,787,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E6%94%B9%E8%BF%9B%E7%9A%84MRF%E7%82%B9%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E7%BA%A2%E5%A4%96%E4%B8%8E%E6%AF%AB%E7%B1%B3%E6%B3%A2%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E4%B8%B0%E8%BD%B6&rft.au=%E8%83%A1%E5%8B%87&rft.au=%E9%A5%B6%E9%B9%8F&rft.au=%E5%B7%A9%E5%BD%A9%E5%85%B0&rft.date=2018-04-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E7%BA%A2%E5%A4%96%E6%8E%A2%E6%B5%8B%E4%B8%8E%E6%88%90%E5%83%8F%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%28%E4%B8%8A%E6%B5%B7%E6%8A%80%E6%9C%AF%E7%89%A9%E7%90%86%E7%A0%94%E7%A9%B6%E6%89%80%29%2C%E4%B8%8A%E6%B5%B7+200083&rft.issn=1001-9014&rft.volume=37&rft.issue=2&rft.spage=212&rft.epage=218&rft_id=info:doi/10.11972%2Fj.issn.1001-9014.2018.02.014&rft.externalDocID=hwyhmb201802014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhwyhmb%2Fhwyhmb.jpg