基于MT-CNN的矿井带式输送机输煤量检测技术

TD63+4; 为实现矿井带式输送机输煤量检测的信息化、智能化,提出基于MT-CNN的矿井带式输送机输煤量检测技术.为了全面提升输煤量检测技术,从而提高矿井效益,选取了多任务卷积神经网络(MT-CNN)对检测目标进行多核心识别检测,优化了图像直线信息和边缘信息的提取效率,构建了良好的网络层次结构,优化了信息连接通道,从而全面提高图像识别分析和数据检测处理的效果.通过MT-CNN技术对输煤量的轮廓形态和荷载状态进行分析运算,经过图像样本数据训练获取矿井带式输送机输煤量的相关数据.研究结果表明,该技术能够有效提高输煤量图像识别的真实性,而检测时间缩短 49%,计算结果准确率提高到98%,有效提高了...

Full description

Saved in:
Bibliographic Details
Published in中国矿业 Vol. 33; no. 6; pp. 137 - 142
Main Author 张克亮
Format Magazine Article
LanguageChinese
Published 神华新街能源有限责任公司,内蒙古 鄂尔多斯 017200 01.06.2024
Subjects
Online AccessGet full text
ISSN1004-4051
DOI10.12075/j.issn.1004-4051.20230577

Cover

Abstract TD63+4; 为实现矿井带式输送机输煤量检测的信息化、智能化,提出基于MT-CNN的矿井带式输送机输煤量检测技术.为了全面提升输煤量检测技术,从而提高矿井效益,选取了多任务卷积神经网络(MT-CNN)对检测目标进行多核心识别检测,优化了图像直线信息和边缘信息的提取效率,构建了良好的网络层次结构,优化了信息连接通道,从而全面提高图像识别分析和数据检测处理的效果.通过MT-CNN技术对输煤量的轮廓形态和荷载状态进行分析运算,经过图像样本数据训练获取矿井带式输送机输煤量的相关数据.研究结果表明,该技术能够有效提高输煤量图像识别的真实性,而检测时间缩短 49%,计算结果准确率提高到98%,有效提高了输煤量检测的效率和准确度,具有较好的应用性能和良好的使用效果.加强矿井带式输送机的输煤量检测,可以为后续研究提供依据,很大程度上推动了相关技术发展,实现矿井信息化、智能化、现代化发展.
AbstractList TD63+4; 为实现矿井带式输送机输煤量检测的信息化、智能化,提出基于MT-CNN的矿井带式输送机输煤量检测技术.为了全面提升输煤量检测技术,从而提高矿井效益,选取了多任务卷积神经网络(MT-CNN)对检测目标进行多核心识别检测,优化了图像直线信息和边缘信息的提取效率,构建了良好的网络层次结构,优化了信息连接通道,从而全面提高图像识别分析和数据检测处理的效果.通过MT-CNN技术对输煤量的轮廓形态和荷载状态进行分析运算,经过图像样本数据训练获取矿井带式输送机输煤量的相关数据.研究结果表明,该技术能够有效提高输煤量图像识别的真实性,而检测时间缩短 49%,计算结果准确率提高到98%,有效提高了输煤量检测的效率和准确度,具有较好的应用性能和良好的使用效果.加强矿井带式输送机的输煤量检测,可以为后续研究提供依据,很大程度上推动了相关技术发展,实现矿井信息化、智能化、现代化发展.
Abstract_FL In order to realize the informatization and intelligence of coal conveying quantity detection of mine belt conveyor,the coal conveying quantity detection technology of mine belt conveyor based on MT-CNN is proposed.The multi-task convolutional neural network(MT-CNN)is selected to perform multi-core recognition and detection of the detection target,optimize the extraction efficiency of image straight line information and edge information,build a good network hierarchy,optimize the information connection channel,and improve the effect of image recognition analysis and data detection and processing.The contour morphology and load state of the coal conveying quantity are analyzed and calculated by MT-CNN technology,and the relevant data of the coal conveying quantity of the mine belt conveyor are obtained through image sample data training.The experimental results show that the research technology can effectively improve the authenticity of the image recognition of coal conveying quantity,shorten the detection time by 49%,and increase the accuracy of the calculation results to 98%,which proves that the research technology can effectively improve the efficiency and accuracy of the coal conveying quantity detection,and has good application performance and good use effect.Strengthening the coal conveying quantity detection of mine belt conveyor can provide a basis for follow-up research,promote the development of related technologies to a large extent,and realize the development of mine information,intelligence and modernization.
Author 张克亮
AuthorAffiliation 神华新街能源有限责任公司,内蒙古 鄂尔多斯 017200
AuthorAffiliation_xml – name: 神华新街能源有限责任公司,内蒙古 鄂尔多斯 017200
Author_FL ZHANG Keliang
Author_FL_xml – sequence: 1
  fullname: ZHANG Keliang
Author_xml – sequence: 1
  fullname: 张克亮
BookMark eNo9jz1Lw1AYhe9QwVr7JwTHxPd-J6MEv6DWpc4lN80trXILXkR0iqAIFuwgLlLooLg6CRJE_0xzY_-FAcXpHJ7hOZwVVDMjkyK0hsHHBCTfGPoDa42PAZjHgGOfAKHApayh-j9cRk1rBwoAiMQVraOwmOXz_G6_40Xtdvl4Vc6-5vlD8f5SfEy-P-8X2aWb5lUpr58XNxP3lLm3sbvN3PR1FS3p-Nimzb9soMPtrU6067UOdvaizZZnMRDmCR1SqRihiYJUK640Fj2uBE1xKBmVoaIJgFaU9yAhARYJsEALhoNECiI0baD1X-9ZbHRs-t3h6PTEVIvdi_7RefWSgQDM6A-ThFzY
ClassificationCodes TD63+4
ContentType Magazine Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12075/j.issn.1004-4051.20230577
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Coal conveying quantity detection of mine belt conveyor based on MT-CNN
EndPage 142
ExternalDocumentID zgky202406014
GroupedDBID -02
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1024-6f937b423cb0efb5bf16d5b63e1974379b3c00fb35d0c2816c048f6418c7626f3
ISSN 1004-4051
IngestDate Thu May 29 04:07:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords 激光测距
coal conveying quantity detection
卷积神经网络
laser ranging
MT-CNN
带式输送机
belt conveyor
输煤量检测
convolution neural network
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1024-6f937b423cb0efb5bf16d5b63e1974379b3c00fb35d0c2816c048f6418c7626f3
PageCount 6
ParticipantIDs wanfang_journals_zgky202406014
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle 中国矿业
PublicationTitle_FL China Mining Magazine
PublicationYear 2024
Publisher 神华新街能源有限责任公司,内蒙古 鄂尔多斯 017200
Publisher_xml – name: 神华新街能源有限责任公司,内蒙古 鄂尔多斯 017200
SSID ssib000271100
ssj0002923792
ssib001104777
ssib036435255
ssib051369032
Score 1.4167734
Snippet TD63+4;...
SourceID wanfang
SourceType Aggregation Database
StartPage 137
Title 基于MT-CNN的矿井带式输送机输煤量检测技术
URI https://d.wanfangdata.com.cn/periodical/zgky202406014
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxNBFF_aevGkouJn6cE5lY07u_N5nE02FMGcUuitZDa7FYQINj00pwiKoGAP4kUKPShePQkSRP-ZJrH_he_NbpINKn5AGF5m5-P35u3kvdm899bz7oBJy9IwZb5WaeCzrhQ-hjP63MpQKdAXsuuyfbbE1ja7t8N3VlbDitfSQd_W0sEv40r-R6pQB3LFKNl_kOx8UKgAGuQLJUgYyr-SMUk40U0SG5IwLFVyv-3XWy2SSKLhK3MENGiWDTTHLrEiRjiiThRcUiROiI5IotHvQVGSCKLrbtj5JUkUJ4a5NtL1EsRE2B6ImBMVI6FMWQPdzZLHoAMA8zYc5pjEjWVsCgDPhF9CMwESqhjbwTdJ9SFFyBbOVO62whENjJ64fg1YDgcF8AXIiaFESyRU5KYXbkVmcJVG3rR2NcA2Q_Zw2hg_BRBTd0QT4YYFLbAe2usQ-xZXDdt06wRmeuh4CYhmSMD6gVgKTKa5iQfjIKioBXTXAdOWVvVGkcCj3B9VJUCLNDalPUGL7GE_qaoQjDWnq3CG2nyGGr7PHoxouVDQc7fJwd7DQ1xdzKHDVr1zoYTDeOUxQvlPMmYBXJjEmItjEWscgQXKw0UsMqeR0EEZW4zWSwgWv9SFk0AJqczVi4Dv_hauC3rr5Z3eXsU-a1_0LswSpW-YYptc8lYGDy57enwyOh29KrbF9O3T6cm309Gb8ecP4y9H37--Phs-mRyPgJg-e3_2_Gjybjj59HLyYjg5_njF224m7fqWX74txN-neMeJHCxtC6eD1AZZbrnNqehyK6KMwpkZeLJRGgS5jXg3SENFRQrKKxeMqhQMApFHV7213qNeds3b4MqqtBtIkXY00zzTNIpkJlVkaSfjll731kted8tfg_3dJdnc-FODm975xTa55a31Hx9kt8G67dt1J84fR-FzbQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMT-CNN%E7%9A%84%E7%9F%BF%E4%BA%95%E5%B8%A6%E5%BC%8F%E8%BE%93%E9%80%81%E6%9C%BA%E8%BE%93%E7%85%A4%E9%87%8F%E6%A3%80%E6%B5%8B%E6%8A%80%E6%9C%AF&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A&rft.au=%E5%BC%A0%E5%85%8B%E4%BA%AE&rft.date=2024-06-01&rft.pub=%E7%A5%9E%E5%8D%8E%E6%96%B0%E8%A1%97%E8%83%BD%E6%BA%90%E6%9C%89%E9%99%90%E8%B4%A3%E4%BB%BB%E5%85%AC%E5%8F%B8%2C%E5%86%85%E8%92%99%E5%8F%A4+%E9%84%82%E5%B0%94%E5%A4%9A%E6%96%AF+017200&rft.issn=1004-4051&rft.volume=33&rft.issue=6&rft.spage=137&rft.epage=142&rft_id=info:doi/10.12075%2Fj.issn.1004-4051.20230577&rft.externalDocID=zgky202406014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgky%2Fzgky.jpg