不平衡标记差异性多标记特征选择算法
TP311%TP181; 针对现有的特征选择算法大多未考虑不同标记对样本的描述程度可能存在差异的问题,提出一种不平衡标记差异性多标记特征选择算法(multi-label feature selection algorithm with imbalance label otherness,MSIO),将不同标记下正负标记的频率分布作为该标记的权值加入到特征选择的过程中,并修正传统的信息熵计算方法,从而得到一组更高效的特征序列.以多标记k近邻(multi-label k-nearest neighbor,ML-kNN)为基础分类器,在Mulan数据库的11个多标记基准数据集上,对基于最大相关性的多...
Saved in:
Published in | 深圳大学学报(理工版) Vol. 37; no. 3; pp. 234 - 242 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
安庆师范大学计算机与信息院,安徽安庆246133
30.05.2020
安徽省高校智能感知与计算重点实验室,安徽安庆246133%安庆师范大学计算机与信息院,安徽安庆,246133 |
Subjects | |
Online Access | Get full text |
ISSN | 1000-2618 |
DOI | 10.3724/SP.J.1249.2020.03234 |
Cover
Loading…
Abstract | TP311%TP181; 针对现有的特征选择算法大多未考虑不同标记对样本的描述程度可能存在差异的问题,提出一种不平衡标记差异性多标记特征选择算法(multi-label feature selection algorithm with imbalance label otherness,MSIO),将不同标记下正负标记的频率分布作为该标记的权值加入到特征选择的过程中,并修正传统的信息熵计算方法,从而得到一组更高效的特征序列.以多标记k近邻(multi-label k-nearest neighbor,ML-kNN)为基础分类器,在Mulan数据库的11个多标记基准数据集上,对基于最大相关性的多标记维数约简(multi-label dimensionality reduction via dependence maximization,MDDM)算法、基于多变量互信息的多标记特征选择算法PMU(pairwise multivariate mutual information)、多标记朴素贝叶斯分类的特征选择(feature selection for multi-label naive Bayes classification,MLNB)算法、基于标记相关性的多标记特征选择(multi-label feature selection with label correlation,MUCO)算法和MSIO算法进行评价,实验结果和统计假设检验说明,MSIO算法稳定性佳且分类精度高,具有一定的有效性和优越性. |
---|---|
AbstractList | TP311%TP181; 针对现有的特征选择算法大多未考虑不同标记对样本的描述程度可能存在差异的问题,提出一种不平衡标记差异性多标记特征选择算法(multi-label feature selection algorithm with imbalance label otherness,MSIO),将不同标记下正负标记的频率分布作为该标记的权值加入到特征选择的过程中,并修正传统的信息熵计算方法,从而得到一组更高效的特征序列.以多标记k近邻(multi-label k-nearest neighbor,ML-kNN)为基础分类器,在Mulan数据库的11个多标记基准数据集上,对基于最大相关性的多标记维数约简(multi-label dimensionality reduction via dependence maximization,MDDM)算法、基于多变量互信息的多标记特征选择算法PMU(pairwise multivariate mutual information)、多标记朴素贝叶斯分类的特征选择(feature selection for multi-label naive Bayes classification,MLNB)算法、基于标记相关性的多标记特征选择(multi-label feature selection with label correlation,MUCO)算法和MSIO算法进行评价,实验结果和统计假设检验说明,MSIO算法稳定性佳且分类精度高,具有一定的有效性和优越性. |
Author | 江健生 王一宾 程玉胜 吴陈 |
AuthorAffiliation | 安庆师范大学计算机与信息院,安徽安庆246133;安徽省高校智能感知与计算重点实验室,安徽安庆246133%安庆师范大学计算机与信息院,安徽安庆,246133 |
AuthorAffiliation_xml | – name: 安庆师范大学计算机与信息院,安徽安庆246133;安徽省高校智能感知与计算重点实验室,安徽安庆246133%安庆师范大学计算机与信息院,安徽安庆,246133 |
Author_FL | CHENG Yusheng WANG Yibin WU Chen JIANG Jiansheng |
Author_FL_xml | – sequence: 1 fullname: WANG Yibin – sequence: 2 fullname: WU Chen – sequence: 3 fullname: CHENG Yusheng – sequence: 4 fullname: JIANG Jiansheng |
Author_xml | – sequence: 1 fullname: 王一宾 – sequence: 2 fullname: 吴陈 – sequence: 3 fullname: 程玉胜 – sequence: 4 fullname: 江健生 |
BookMark | eNotT71KA0EY3CKCMeYN7K1u_fb79nK7pQR_CURQ67D3J4pcwEUMVtFGgqQUwSoBQWwOIYUGxKdxL_EtPInVMDPMDLPCKlk3SxhbE8ApQLlxeMD3uUCpOQICB0KSFVYVAOBhQ6hlVrf2NITSJK1JVBl9fwzddDIfj4vR3Tx_c--5-7wt-i_u-WmhzAZT93Xz0x8U96-z_LGYPKyypdSc26T-jzV2vL111Nz1Wu2dveZmy7MCUHqoUKlE-DoIUUexH0jVUMqUzARKR4kJIx3oCIhi4ZdCiiImgDjxjUIEoBpbX_RemSw12UnnrHt5kZWLHXsd93rh30coE5J-AZTbWgI |
ClassificationCodes | TP311%TP181 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3724/SP.J.1249.2020.03234 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitle_FL | Multi-label feature selection algorithm with imbalance label otherness |
EndPage | 242 |
ExternalDocumentID | szdxxb202003004 |
GrantInformation_xml | – fundername: 安徽省高校重点科研资助项目; 福建省高校重点实验室开放课题资助项目; 安徽省高校重点实验室基金资助项目 funderid: (KJ2017A352); (D1801); (ACAIM160102) |
GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB PSX TCJ |
ID | FETCH-LOGICAL-s1024-28288e1597b29cd5748688a7b2a789ceabc979c033d1589cf21d300de5a822003 |
ISSN | 1000-2618 |
IngestDate | Thu May 29 03:55:50 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | 信息熵 标记差异性 标记相关性 不平衡数据 多标记学习 人工智能 特征选择 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1024-28288e1597b29cd5748688a7b2a789ceabc979c033d1589cf21d300de5a822003 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_szdxxb202003004 |
PublicationCentury | 2000 |
PublicationDate | 2020-05-30 |
PublicationDateYYYYMMDD | 2020-05-30 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | 深圳大学学报(理工版) |
PublicationTitle_FL | Journal of Shenzhen University(Science & Engineering) |
PublicationYear | 2020 |
Publisher | 安庆师范大学计算机与信息院,安徽安庆246133 安徽省高校智能感知与计算重点实验室,安徽安庆246133%安庆师范大学计算机与信息院,安徽安庆,246133 |
Publisher_xml | – name: 安庆师范大学计算机与信息院,安徽安庆246133 – name: 安徽省高校智能感知与计算重点实验室,安徽安庆246133%安庆师范大学计算机与信息院,安徽安庆,246133 |
SSID | ssib002039931 ssib023167934 ssib058868920 ssj0040343 ssib002423991 ssib057620144 ssib006704940 ssib041262056 ssib051373859 ssib001129675 |
Score | 2.2216582 |
Snippet | TP311%TP181; 针对现有的特征选择算法大多未考虑不同标记对样本的描述程度可能存在差异的问题,提出一种不平衡标记差异性多标记特征选择算法(multi-label feature selection algorithm with imbalance label... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 234 |
Title | 不平衡标记差异性多标记特征选择算法 |
URI | https://d.wanfangdata.com.cn/periodical/szdxxb202003004 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxNBdKn14kWsH_hNDg7oIXEzM5udOc4mu5SC4qGF3srO7kZPEUwKJafqRYp4FMGTBUG8BCEHLYi_xqT1X_jezCS7qQE_ICyzb9-8eR-ZzHuzeW88747PNTghGmvsQ4gCAURe11QUdZZKmRcZ1V2OucMPHrbWt_jGdrC9cmZc-dfS7kA3suHSvJL_sSrAwK6YJfsPlp0TBQC0wb5wBQvD9a9sTGJOIkFEh8QBiSSJGIkFUU38xC2ifAKhPkJiEvkGJ8Q2NtpEUMQRPlEhQhQnUi3rFRIhkTj2isHxJLHEXgDE7hFREnEAWYYIAR7seZYzl9cAQxI1kYJsGybNcG7cDlGtSgNoKqICEieGSYHEJQzXmvEfOJbwkcWZ72WYJzEy5RRjhEY54hIlQHIRRzEkUql2VsJ0tlQkKkGAOO0SpYVyyASpgCYsLxI0l1R3T6h98e_Pv--OC2GVqGbCCCMDXNs4zBKlGBugLSv6RQ2qmXyxaSTO3shR4uRSFCbP4righs7vnGClP1skxK1NWAQAAl5RXbxsxRw3SVl1JXJ7xNapobaE2en1koWU4xv7R42NBp5C3kAVNXw277xQibw_zPf2NKL4zNTgPUshNvMr-xjGBwcPslogiProAy8kTwOgkuwcYomi-aJBsTSDLGsW8iYemVAWfAqaWIur9MEhXqa4KzC_F6IlzAls1h3jPnNZNk57Nn8WJb-_TG6TvNfrpr3HFT9z84J33gWINWVn-5q3Mnxy0VtzS3C_dtfVib93yWM_vr6eHI1PDg-n71-ejD5Pvowm315M9z9OPryzkOODo8n35z_3D6avPh2P3k7Hby57W0m82V6vuzNQ6n1w_Xkdd0REATFHqKnM8iDkIJ5I4S4NhcyKVGcylJnPWN4MANClzRyMkxdBCq4_GOqKt9p72iuuejWW6jRPcw0hneaZZJp1g24uc94FFRWpf82rOcl33G9cf-eUya__GeWGd66cZze91cGz3eIW-O0Dfdt8T34Bm4yoaA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%8D%E5%B9%B3%E8%A1%A1%E6%A0%87%E8%AE%B0%E5%B7%AE%E5%BC%82%E6%80%A7%E5%A4%9A%E6%A0%87%E8%AE%B0%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9%E7%AE%97%E6%B3%95&rft.jtitle=%E6%B7%B1%E5%9C%B3%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E7%90%86%E5%B7%A5%E7%89%88%EF%BC%89&rft.au=%E7%8E%8B%E4%B8%80%E5%AE%BE&rft.au=%E5%90%B4%E9%99%88&rft.au=%E7%A8%8B%E7%8E%89%E8%83%9C&rft.au=%E6%B1%9F%E5%81%A5%E7%94%9F&rft.date=2020-05-30&rft.pub=%E5%AE%89%E5%BA%86%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E4%BF%A1%E6%81%AF%E9%99%A2%2C%E5%AE%89%E5%BE%BD%E5%AE%89%E5%BA%86246133&rft.issn=1000-2618&rft.volume=37&rft.issue=3&rft.spage=234&rft.epage=242&rft_id=info:doi/10.3724%2FSP.J.1249.2020.03234&rft.externalDocID=szdxxb202003004 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fszdxxb%2Fszdxxb.jpg |