基于共轭梯度法的感知矩阵优化方法
TP399; 压缩感知理论中降低信号维数的关键问题是构造有效的测量矩阵.在已知稀疏基的情况下,基于ETF(Equiangular Tight Frame)框架的测量矩阵构造方法和稀疏信号重构过程均依赖于感知矩阵.为此,设计了一种基于共轭梯度法的感知矩阵优化方法,该方法简单易行,且所求结果的Gram矩阵与目标Gram矩阵更接近.实验结果表明,此感知矩阵优化方法在理论分析、实际图像应用及算法有效性上均具优势....
Saved in:
Published in | 浙江大学学报(理学版) Vol. 46; no. 1; pp. 15 - 21 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
西安电子科技大学 数学与统计学院,陕西 西安,710126
2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1008-9497 |
DOI | 10.3785/j.issn.1008-9497.2019.01.003 |
Cover
Abstract | TP399; 压缩感知理论中降低信号维数的关键问题是构造有效的测量矩阵.在已知稀疏基的情况下,基于ETF(Equiangular Tight Frame)框架的测量矩阵构造方法和稀疏信号重构过程均依赖于感知矩阵.为此,设计了一种基于共轭梯度法的感知矩阵优化方法,该方法简单易行,且所求结果的Gram矩阵与目标Gram矩阵更接近.实验结果表明,此感知矩阵优化方法在理论分析、实际图像应用及算法有效性上均具优势. |
---|---|
AbstractList | TP399; 压缩感知理论中降低信号维数的关键问题是构造有效的测量矩阵.在已知稀疏基的情况下,基于ETF(Equiangular Tight Frame)框架的测量矩阵构造方法和稀疏信号重构过程均依赖于感知矩阵.为此,设计了一种基于共轭梯度法的感知矩阵优化方法,该方法简单易行,且所求结果的Gram矩阵与目标Gram矩阵更接近.实验结果表明,此感知矩阵优化方法在理论分析、实际图像应用及算法有效性上均具优势. |
Author | 刘三阳 李昕艺 谢维 |
AuthorAffiliation | 西安电子科技大学 数学与统计学院,陕西 西安,710126 |
AuthorAffiliation_xml | – name: 西安电子科技大学 数学与统计学院,陕西 西安,710126 |
Author_FL | XIE Wei LI Xinyi LIU Sanyang |
Author_FL_xml | – sequence: 1 fullname: LI Xinyi – sequence: 2 fullname: LIU Sanyang – sequence: 3 fullname: XIE Wei |
Author_xml | – sequence: 1 fullname: 李昕艺 – sequence: 2 fullname: 刘三阳 – sequence: 3 fullname: 谢维 |
BookMark | eNo9j71KA0EUhaeIYIx5C8Fqx3tnNjM7pQT_IGCjdbjrbCSLTMBBDNaxEztDsFkIKFiIiFi46Ntkd_UtXFGsDpwPzuFbYQ03cgljawhc6qizkfKh944jQBSY0GguAA0H5ACywZr__TJrez-MARA6KEzUZFBk-SK_Li6fPz8ey_lTkd-XLzfV7aScZFV2V2UPX7PXxfusuJqW07carbKlAZ34pP2XLXa4vXXQ3Q16-zt73c1e4BGEDJSKwRCBjUEaUoqEQZOgpqgmijTF-khZgRoSQ8kAQxLahoQUIlobhbLF1n93z8kNyB3309HZqasf-xepHY_jH8NaA6T8BsecW3Y |
ClassificationCodes | TP399 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3785/j.issn.1008-9497.2019.01.003 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | A novel conjugate gradient method for sensing matrix optimization for compressed sensing systems |
EndPage | 21 |
ExternalDocumentID | zjdxxb201901003 |
GrantInformation_xml | – fundername: 陕西省自然科学基础研究计划资助 funderid: (2017JM1001) |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-s1023-66b09aa0db039a66a2919e17a866b6a7ab7c6d2170e9aef14a27d4a1a411dd843 |
ISSN | 1008-9497 |
IngestDate | Thu May 29 04:06:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 感知矩阵优化 共轭梯度法 压缩感知 ETF框架 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1023-66b09aa0db039a66a2919e17a866b6a7ab7c6d2170e9aef14a27d4a1a411dd843 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zjdxxb201901003 |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationTitle | 浙江大学学报(理学版) |
PublicationTitle_FL | Journal of Zhejiang University(Science Edition) |
PublicationYear | 2019 |
Publisher | 西安电子科技大学 数学与统计学院,陕西 西安,710126 |
Publisher_xml | – name: 西安电子科技大学 数学与统计学院,陕西 西安,710126 |
SSID | ssib001051298 ssib051373732 ssib002258177 ssib004369313 ssib008679801 ssib002476865 ssib023167501 ssib059160192 ssib000948450 ssib002040240 ssib001104615 ssib000969734 ssib008143637 ssib006704891 ssj0002507526 |
Score | 2.1507227 |
Snippet | TP399; 压缩感知理论中降低信号维数的关键问题是构造有效的测量矩阵.在已知稀疏基的情况下,基于ETF(Equiangular Tight... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 15 |
Title | 基于共轭梯度法的感知矩阵优化方法 |
URI | https://d.wanfangdata.com.cn/periodical/zjdxxb201901003 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1gngRRcVveuicSmpmMp_HZDdLEeqphd7KZJMoHlawWyg9eKo38WYpHlwQFDyIiHiw6H_T3ep_4XuTNDu0xS8Whsl7b9_83sxu5s3kzUsQzEuuC2rKKpT9XIS8ZHmYRzwPhbIlcGSfuSCa5ftyaZXfWxNrM2dee1FLm8N8sb996rmS_xlVoMG44inZfxjZVikQoA7jCyWMMJR_NcYkE8T0SJqQjGOpM6RoQVJKMk3SLkm6JJMkYSTpIQtkEomUNCZGkEwRA9_iSIESVCGlRxJxVDEkM8SAKuGa6GAdm4CK0wNlalqFvqfriACv5lKnXJCEk0S5StchaSsAIHHt9rAVrR2AiGhfRhFtHKuWabcwHJCus14iQLRMo-x0E8KB1g49mOGYjWHxVASuIuwraChNScr9HRHvjouCgDStDcqcLgDLXSc5sAAcKGCooY1lOjpp_YKDK7DRqY01uqzBgJ2msY2EejIGexVwsk5Trw12mBZOQcc6CvOrSW8CwnAUw-uY5aMZissT_8R6uqlPwjaOS33S_PiUGCst3JSI6hdb9RjUaFzC2iieugJtgOb2o2JrK0cZWK9jMt2zTCmKIbPLTzPPPeea-0_FjTTKTzcYoTvpPZXFgALP_WQwgzDun8MWmip_-wAWw_5T-Fia2HM_pYL5x8v1pMH5l567jckkddTyGWZ9ENNrQWMFn9a9F7BUwhVPu0cLywMl3Bsb2347F8w3nXr3d13qjgAOKjt44HmrKxeDC80ycy6p7xmXgpnth5eDaDzaP9h_MX726cf3D5M3H8f77yafXx6-2pnsjA5Hbw9H73_ufTn4tjd-vjvZ_QqsK8FqL1vpLIXNG1PCDUzBEkqZR8baqMij2FgpLTNwI6bKauBIq2yu-rJgVEWlsWVFuWWq4JZaTmlRaB5fDWYHjwfltWBOV6W1ui9lKWGUqioHRyiS-HIKqquCldeDucbC9eaOuLF-7Fdz488iN4PzWK_3NG8Fs8Mnm-Vt8PKH-R33U_sFVS2x0Q |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%85%B1%E8%BD%AD%E6%A2%AF%E5%BA%A6%E6%B3%95%E7%9A%84%E6%84%9F%E7%9F%A5%E7%9F%A9%E9%98%B5%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B5%99%E6%B1%9F%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E7%90%86%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E6%9D%8E%E6%98%95%E8%89%BA&rft.au=%E5%88%98%E4%B8%89%E9%98%B3&rft.au=%E8%B0%A2%E7%BB%B4&rft.date=2019&rft.pub=%E8%A5%BF%E5%AE%89%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6+%E6%95%B0%E5%AD%A6%E4%B8%8E%E7%BB%9F%E8%AE%A1%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF+%E8%A5%BF%E5%AE%89%2C710126&rft.issn=1008-9497&rft.volume=46&rft.issue=1&rft.spage=15&rft.epage=21&rft_id=info:doi/10.3785%2Fj.issn.1008-9497.2019.01.003&rft.externalDocID=zjdxxb201901003 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxb%2Fzjdxxb.jpg |