基于共轭梯度法的感知矩阵优化方法

TP399; 压缩感知理论中降低信号维数的关键问题是构造有效的测量矩阵.在已知稀疏基的情况下,基于ETF(Equiangular Tight Frame)框架的测量矩阵构造方法和稀疏信号重构过程均依赖于感知矩阵.为此,设计了一种基于共轭梯度法的感知矩阵优化方法,该方法简单易行,且所求结果的Gram矩阵与目标Gram矩阵更接近.实验结果表明,此感知矩阵优化方法在理论分析、实际图像应用及算法有效性上均具优势....

Full description

Saved in:
Bibliographic Details
Published in浙江大学学报(理学版) Vol. 46; no. 1; pp. 15 - 21
Main Authors 李昕艺, 刘三阳, 谢维
Format Journal Article
LanguageChinese
Published 西安电子科技大学 数学与统计学院,陕西 西安,710126 2019
Subjects
Online AccessGet full text
ISSN1008-9497
DOI10.3785/j.issn.1008-9497.2019.01.003

Cover

Abstract TP399; 压缩感知理论中降低信号维数的关键问题是构造有效的测量矩阵.在已知稀疏基的情况下,基于ETF(Equiangular Tight Frame)框架的测量矩阵构造方法和稀疏信号重构过程均依赖于感知矩阵.为此,设计了一种基于共轭梯度法的感知矩阵优化方法,该方法简单易行,且所求结果的Gram矩阵与目标Gram矩阵更接近.实验结果表明,此感知矩阵优化方法在理论分析、实际图像应用及算法有效性上均具优势.
AbstractList TP399; 压缩感知理论中降低信号维数的关键问题是构造有效的测量矩阵.在已知稀疏基的情况下,基于ETF(Equiangular Tight Frame)框架的测量矩阵构造方法和稀疏信号重构过程均依赖于感知矩阵.为此,设计了一种基于共轭梯度法的感知矩阵优化方法,该方法简单易行,且所求结果的Gram矩阵与目标Gram矩阵更接近.实验结果表明,此感知矩阵优化方法在理论分析、实际图像应用及算法有效性上均具优势.
Author 刘三阳
李昕艺
谢维
AuthorAffiliation 西安电子科技大学 数学与统计学院,陕西 西安,710126
AuthorAffiliation_xml – name: 西安电子科技大学 数学与统计学院,陕西 西安,710126
Author_FL XIE Wei
LI Xinyi
LIU Sanyang
Author_FL_xml – sequence: 1
  fullname: LI Xinyi
– sequence: 2
  fullname: LIU Sanyang
– sequence: 3
  fullname: XIE Wei
Author_xml – sequence: 1
  fullname: 李昕艺
– sequence: 2
  fullname: 刘三阳
– sequence: 3
  fullname: 谢维
BookMark eNo9j71KA0EUhaeIYIx5C8Fqx3tnNjM7pQT_IGCjdbjrbCSLTMBBDNaxEztDsFkIKFiIiFi46Ntkd_UtXFGsDpwPzuFbYQ03cgljawhc6qizkfKh944jQBSY0GguAA0H5ACywZr__TJrez-MARA6KEzUZFBk-SK_Li6fPz8ey_lTkd-XLzfV7aScZFV2V2UPX7PXxfusuJqW07carbKlAZ34pP2XLXa4vXXQ3Q16-zt73c1e4BGEDJSKwRCBjUEaUoqEQZOgpqgmijTF-khZgRoSQ8kAQxLahoQUIlobhbLF1n93z8kNyB3309HZqasf-xepHY_jH8NaA6T8BsecW3Y
ClassificationCodes TP399
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3785/j.issn.1008-9497.2019.01.003
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL A novel conjugate gradient method for sensing matrix optimization for compressed sensing systems
EndPage 21
ExternalDocumentID zjdxxb201901003
GrantInformation_xml – fundername: 陕西省自然科学基础研究计划资助
  funderid: (2017JM1001)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1023-66b09aa0db039a66a2919e17a866b6a7ab7c6d2170e9aef14a27d4a1a411dd843
ISSN 1008-9497
IngestDate Thu May 29 04:06:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 感知矩阵优化
共轭梯度法
压缩感知
ETF框架
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1023-66b09aa0db039a66a2919e17a866b6a7ab7c6d2170e9aef14a27d4a1a411dd843
PageCount 7
ParticipantIDs wanfang_journals_zjdxxb201901003
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationTitle 浙江大学学报(理学版)
PublicationTitle_FL Journal of Zhejiang University(Science Edition)
PublicationYear 2019
Publisher 西安电子科技大学 数学与统计学院,陕西 西安,710126
Publisher_xml – name: 西安电子科技大学 数学与统计学院,陕西 西安,710126
SSID ssib001051298
ssib051373732
ssib002258177
ssib004369313
ssib008679801
ssib002476865
ssib023167501
ssib059160192
ssib000948450
ssib002040240
ssib001104615
ssib000969734
ssib008143637
ssib006704891
ssj0002507526
Score 2.1507227
Snippet TP399; 压缩感知理论中降低信号维数的关键问题是构造有效的测量矩阵.在已知稀疏基的情况下,基于ETF(Equiangular Tight...
SourceID wanfang
SourceType Aggregation Database
StartPage 15
Title 基于共轭梯度法的感知矩阵优化方法
URI https://d.wanfangdata.com.cn/periodical/zjdxxb201901003
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1gngRRcVveuicSmpmMp_HZDdLEeqphd7KZJMoHlawWyg9eKo38WYpHlwQFDyIiHiw6H_T3ep_4XuTNDu0xS8Whsl7b9_83sxu5s3kzUsQzEuuC2rKKpT9XIS8ZHmYRzwPhbIlcGSfuSCa5ftyaZXfWxNrM2dee1FLm8N8sb996rmS_xlVoMG44inZfxjZVikQoA7jCyWMMJR_NcYkE8T0SJqQjGOpM6RoQVJKMk3SLkm6JJMkYSTpIQtkEomUNCZGkEwRA9_iSIESVCGlRxJxVDEkM8SAKuGa6GAdm4CK0wNlalqFvqfriACv5lKnXJCEk0S5StchaSsAIHHt9rAVrR2AiGhfRhFtHKuWabcwHJCus14iQLRMo-x0E8KB1g49mOGYjWHxVASuIuwraChNScr9HRHvjouCgDStDcqcLgDLXSc5sAAcKGCooY1lOjpp_YKDK7DRqY01uqzBgJ2msY2EejIGexVwsk5Trw12mBZOQcc6CvOrSW8CwnAUw-uY5aMZissT_8R6uqlPwjaOS33S_PiUGCst3JSI6hdb9RjUaFzC2iieugJtgOb2o2JrK0cZWK9jMt2zTCmKIbPLTzPPPeea-0_FjTTKTzcYoTvpPZXFgALP_WQwgzDun8MWmip_-wAWw_5T-Fia2HM_pYL5x8v1pMH5l567jckkddTyGWZ9ENNrQWMFn9a9F7BUwhVPu0cLywMl3Bsb2347F8w3nXr3d13qjgAOKjt44HmrKxeDC80ycy6p7xmXgpnth5eDaDzaP9h_MX726cf3D5M3H8f77yafXx6-2pnsjA5Hbw9H73_ufTn4tjd-vjvZ_QqsK8FqL1vpLIXNG1PCDUzBEkqZR8baqMij2FgpLTNwI6bKauBIq2yu-rJgVEWlsWVFuWWq4JZaTmlRaB5fDWYHjwfltWBOV6W1ui9lKWGUqioHRyiS-HIKqquCldeDucbC9eaOuLF-7Fdz488iN4PzWK_3NG8Fs8Mnm-Vt8PKH-R33U_sFVS2x0Q
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%85%B1%E8%BD%AD%E6%A2%AF%E5%BA%A6%E6%B3%95%E7%9A%84%E6%84%9F%E7%9F%A5%E7%9F%A9%E9%98%B5%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B5%99%E6%B1%9F%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E7%90%86%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E6%9D%8E%E6%98%95%E8%89%BA&rft.au=%E5%88%98%E4%B8%89%E9%98%B3&rft.au=%E8%B0%A2%E7%BB%B4&rft.date=2019&rft.pub=%E8%A5%BF%E5%AE%89%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6+%E6%95%B0%E5%AD%A6%E4%B8%8E%E7%BB%9F%E8%AE%A1%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF+%E8%A5%BF%E5%AE%89%2C710126&rft.issn=1008-9497&rft.volume=46&rft.issue=1&rft.spage=15&rft.epage=21&rft_id=info:doi/10.3785%2Fj.issn.1008-9497.2019.01.003&rft.externalDocID=zjdxxb201901003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxb%2Fzjdxxb.jpg