融合机器学习算法的煤矿井下信道建模研究
TD166%TN929.4; 由于矿井复杂多变的环境特征,传统射线跟踪法的井下无线信道建模误差较大,本文通过对机器学习算法及其搭配使用的特征进行分析评估,从而选择最优的信道建模方法.引入机器学习算法对场景特征进行学习进而实现较为精确的建模,研究了BP神经网络、遗传算法、支持向量机在井下信道建模方向上的应用.构建了射线跟踪法与GA_BP相结合的场强预测模型,同时使用最小二乘支持向量机方法建立预测模型.以地下巷道的实测数据作为算法的训练样本,对场强进行预测,试验本文各类算法的特征以及算法中参数对预测结果的影响.得到场强预测结果与实测数据的误差为-1.206 dbm,本文混合模型提升了井下场强预测精...
Saved in:
Published in | 中国矿业 Vol. 30; no. 11; pp. 68 - 74 |
---|---|
Main Authors | , , , , |
Format | Magazine Article |
Language | Chinese |
Published |
内蒙古科技大学信息工程学院,内蒙古包头014010
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1004-4051 |
DOI | 10.12075/j.issn.1004-4051.2021.11.014 |
Cover
Abstract | TD166%TN929.4; 由于矿井复杂多变的环境特征,传统射线跟踪法的井下无线信道建模误差较大,本文通过对机器学习算法及其搭配使用的特征进行分析评估,从而选择最优的信道建模方法.引入机器学习算法对场景特征进行学习进而实现较为精确的建模,研究了BP神经网络、遗传算法、支持向量机在井下信道建模方向上的应用.构建了射线跟踪法与GA_BP相结合的场强预测模型,同时使用最小二乘支持向量机方法建立预测模型.以地下巷道的实测数据作为算法的训练样本,对场强进行预测,试验本文各类算法的特征以及算法中参数对预测结果的影响.得到场强预测结果与实测数据的误差为-1.206 dbm,本文混合模型提升了井下场强预测精度. |
---|---|
AbstractList | TD166%TN929.4; 由于矿井复杂多变的环境特征,传统射线跟踪法的井下无线信道建模误差较大,本文通过对机器学习算法及其搭配使用的特征进行分析评估,从而选择最优的信道建模方法.引入机器学习算法对场景特征进行学习进而实现较为精确的建模,研究了BP神经网络、遗传算法、支持向量机在井下信道建模方向上的应用.构建了射线跟踪法与GA_BP相结合的场强预测模型,同时使用最小二乘支持向量机方法建立预测模型.以地下巷道的实测数据作为算法的训练样本,对场强进行预测,试验本文各类算法的特征以及算法中参数对预测结果的影响.得到场强预测结果与实测数据的误差为-1.206 dbm,本文混合模型提升了井下场强预测精度. |
Author | 史明泉 崔丽珍 杨勇 李丹阳 曹坚 |
AuthorAffiliation | 内蒙古科技大学信息工程学院,内蒙古包头014010 |
AuthorAffiliation_xml | – name: 内蒙古科技大学信息工程学院,内蒙古包头014010 |
Author_FL | CUI Lizhen SHI Mingquan CAO Jian LI Danyang YANG Yong |
Author_FL_xml | – sequence: 1 fullname: CUI Lizhen – sequence: 2 fullname: CAO Jian – sequence: 3 fullname: LI Danyang – sequence: 4 fullname: YANG Yong – sequence: 5 fullname: SHI Mingquan |
Author_xml | – sequence: 1 fullname: 崔丽珍 – sequence: 2 fullname: 曹坚 – sequence: 3 fullname: 李丹阳 – sequence: 4 fullname: 杨勇 – sequence: 5 fullname: 史明泉 |
BookMark | eNo9j81Kw0AURmdRwVr7GF1mvHcyyaRLKf5BwY2uy6SZKa2SgoOI7gQFQQRBS1FEWxCpC90IonHRl0ky-hZGFFcfnMV3OHOkFPdjRUgNgSID4S30aNeYmCIAdzh4SBkwpIgUkJdI-Z_Pkqox3RAAmMCClkn98_YsOz_Jb5LsapI9PaTvI_s8zF8G9vrIHt_bu2maDNK303Q6_jq8yD6SfDK2o0v7-DpPZrTcNqr6txWyuby00Vh1musra43FpmMQmOtgPZKekBFoJUXkg8bQlzwADiEqDAMtdOhzEWilRdTmXCiQvM0jD5kQXDK3Qmq_v3sy1jLutHr93Z24MLYOOlv7P6FFCbruN6NfYVk |
ClassificationCodes | TD166%TN929.4 |
ContentType | Magazine Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12075/j.issn.1004-4051.2021.11.014 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Research on the channel modeling in coal mine based on machine learning algorithm |
EndPage | 74 |
ExternalDocumentID | zgky202111013 |
GrantInformation_xml | – fundername: (国家自然科学基金项目资助); (内蒙古自治区科技计划项目资助); (内蒙古自然科学基金项目资助) funderid: (国家自然科学基金项目资助); (内蒙古自治区科技计划项目资助); (内蒙古自然科学基金项目资助) |
GroupedDBID | -02 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CDRFL GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-s1023-19da57ad0fea7d60f1b6a48040b1e1b8f7fb6478fef7dc447e0a4c4d512774a23 |
ISSN | 1004-4051 |
IngestDate | Thu May 29 04:07:01 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | 煤矿井下;场强预测;混合模型;射线跟踪;GA_BP;LS-SVM |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1023-19da57ad0fea7d60f1b6a48040b1e1b8f7fb6478fef7dc447e0a4c4d512774a23 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zgky202111013 |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 中国矿业 |
PublicationTitle_FL | China Mining Magazine |
PublicationYear | 2021 |
Publisher | 内蒙古科技大学信息工程学院,内蒙古包头014010 |
Publisher_xml | – name: 内蒙古科技大学信息工程学院,内蒙古包头014010 |
SSID | ssib000271100 ssj0002923792 ssib001104777 ssib036435255 ssib051369032 |
Score | 1.3745825 |
Snippet | TD166%TN929.4;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 68 |
Title | 融合机器学习算法的煤矿井下信道建模研究 |
URI | https://d.wanfangdata.com.cn/periodical/zgky202111013 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5iBPGkouIz5GAfZ52e6enHsWd3hiDoKYHcwjwjCCuYzSF7ExQEFQQNoogmIBIPehFE10P-zD70X1jVM7s7GyU-LkNRU13VXTWz9fVsV7dlXcld4bM8pbbKHGkzylw7Tqi086LwlJemKTfHAV2_wZdW2LVVf3XuyKPaqqXNTtJIu7-tK_mfqAIP4opVsv8Q2YlSYAAN8YUrRBiufxVjEkqiQiJbJPSJcoiUJORENUmgDUcRLZHQLaI5CRkJgOOQUBAdEiVQOPCI8pGjNJEMCQnyhlARCSLTShsZICSRgSEioikJFeBQojw0EQTGKEeLeEugIWX0aEUCXgfBlSpddhsatmbNwaAmz5XRzYwmc6eUlREMeirCjRZl1LVmGnNkyHDcWGGfFRDeAZHSTzC4Ki9X30FcWhUEjp9cI8XRR-h6F12MnKhymYZhUFQpNS4hCY0rgTkTg9J3HH2nIzM-aGhioEv_ToSVCaELr8GhdoFomlvGXMDMdNappRtcBgSQmdbzkefU3ztayy7lAUQVTikPN_olA7qAAU0KRAONiYEGuqyB-9WWNbsHNhnvrt_aQgkAg3gE9FFXwDS_9oGi-o8a9xecgm3c5WNaxewBtvXdaZWzTz2unKpqGXGRC3MJocrlB1Wvjllk3Oerh_XYVNS1i7i9XgN_yyetE-Nd2Bd1-Q6esua6N09b6vvrx4MnD4aveoMXe4MP7_pfd0Yfnw8_bY9e3hvdfzt6s9_vbfe_POzv7_64-3TwrTfc2x3tPBu9_3zGWonC5eaSXR1FYm_g3iY2VVnsizhzijwWGXcKmvCYSciACc1pIgtRJFi1XeSFyFLGRO7ELGUZwGmYX8Wud9aab99u5-esRSEw08kkVqDBl6kE8JhlgArTwsvcTJy3FqqxrlU_NRtrM-G58CeBi9bx6QtyyZrv3NnMLwN07iQLJqI_AcfRjj8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E7%9A%84%E7%85%A4%E7%9F%BF%E4%BA%95%E4%B8%8B%E4%BF%A1%E9%81%93%E5%BB%BA%E6%A8%A1%E7%A0%94%E7%A9%B6&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A&rft.au=%E5%B4%94%E4%B8%BD%E7%8F%8D&rft.au=%E6%9B%B9%E5%9D%9A&rft.au=%E6%9D%8E%E4%B8%B9%E9%98%B3&rft.au=%E6%9D%A8%E5%8B%87&rft.date=2021-11-01&rft.pub=%E5%86%85%E8%92%99%E5%8F%A4%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%86%85%E8%92%99%E5%8F%A4%E5%8C%85%E5%A4%B4014010&rft.issn=1004-4051&rft.volume=30&rft.issue=11&rft.spage=68&rft.epage=74&rft_id=info:doi/10.12075%2Fj.issn.1004-4051.2021.11.014&rft.externalDocID=zgky202111013 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgky%2Fzgky.jpg |