基于脉冲神经网络的轻量化SAR图像舰船识别算法
TN957.52%TP391.4; 针对传统方法进行合成孔径雷达(SAR)图像目标识别存在参数多、能耗高等问题,提出了一种基于脉冲神经网络(SNN)的轻量化SAR图像舰船识别算法.首先,利用视觉注意力机制提取SAR图像视觉显著图,采用泊松编码器进行脉冲序列编码,能抑制背景噪声干扰.然后,结合泄漏整合发射(LIF)脉冲神经元和卷积神经网络,构建融合时序信息的SNN模型,能实现SAR图像舰船识别.最后,采用反正切函数作为反向传播时脉冲发射函数的梯度替代函数对SNN模型进行优化,能解决模型难以训练的问题.实验结果表明所提算法具有高精度、少参数、高效率和低能耗等优势,能实现SAR图像高效准确舰船识别....
Saved in:
Published in | 东北大学学报(自然科学版) Vol. 45; no. 4; pp. 474 - 482 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
中山大学·深圳 电子与通信工程学院,广东 深圳 518107%空军预警学院,湖北 武汉 430019%中山大学 系统科学与工程学院,广东 广州 510275
15.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1005-3026 |
DOI | 10.12068/j.issn.1005-3026.2024.04.003 |
Cover
Abstract | TN957.52%TP391.4; 针对传统方法进行合成孔径雷达(SAR)图像目标识别存在参数多、能耗高等问题,提出了一种基于脉冲神经网络(SNN)的轻量化SAR图像舰船识别算法.首先,利用视觉注意力机制提取SAR图像视觉显著图,采用泊松编码器进行脉冲序列编码,能抑制背景噪声干扰.然后,结合泄漏整合发射(LIF)脉冲神经元和卷积神经网络,构建融合时序信息的SNN模型,能实现SAR图像舰船识别.最后,采用反正切函数作为反向传播时脉冲发射函数的梯度替代函数对SNN模型进行优化,能解决模型难以训练的问题.实验结果表明所提算法具有高精度、少参数、高效率和低能耗等优势,能实现SAR图像高效准确舰船识别. |
---|---|
AbstractList | TN957.52%TP391.4; 针对传统方法进行合成孔径雷达(SAR)图像目标识别存在参数多、能耗高等问题,提出了一种基于脉冲神经网络(SNN)的轻量化SAR图像舰船识别算法.首先,利用视觉注意力机制提取SAR图像视觉显著图,采用泊松编码器进行脉冲序列编码,能抑制背景噪声干扰.然后,结合泄漏整合发射(LIF)脉冲神经元和卷积神经网络,构建融合时序信息的SNN模型,能实现SAR图像舰船识别.最后,采用反正切函数作为反向传播时脉冲发射函数的梯度替代函数对SNN模型进行优化,能解决模型难以训练的问题.实验结果表明所提算法具有高精度、少参数、高效率和低能耗等优势,能实现SAR图像高效准确舰船识别. |
Abstract_FL | Due to the more parameters and higher energy-consumption in the traditional methods for the synthetic aperture radar(SAR)image target recognition,this paper proposes a lightweight ship recognition algorithm based on the spiking neural network(SNN)in SAR images.Firsty,the visual attention mechanism is adopted to extract the visual saliency map from SAR images,and the Poisson encoder is adopted for the spike train encode,which can suppress the background noise interference.Then,combined with the leaky integrate-and-fire(LIF)spiking neuron and convolutional neural network,the SNN model integrating the time series information is constructed,which can realize the ship recognition in SAR images.Finally,the SNN model is optimized by using the arctangent function as the surrogate gradient function of the spiking emission function during the backpropagation,which can solve the problem that the SNN model is difficult to train.The experiment results show that the proposed algorithm has higher accuracy,fewer parameters,higher efficiency,and lower energy-consumption,which can achieve efficient and accurate ship recognition in SAR images. |
Author | 张琳 朱楠楠 谢洪途 陈佳兴 |
AuthorAffiliation | 中山大学·深圳 电子与通信工程学院,广东 深圳 518107%空军预警学院,湖北 武汉 430019%中山大学 系统科学与工程学院,广东 广州 510275 |
AuthorAffiliation_xml | – name: 中山大学·深圳 电子与通信工程学院,广东 深圳 518107%空军预警学院,湖北 武汉 430019%中山大学 系统科学与工程学院,广东 广州 510275 |
Author_FL | XIE Hong-tu ZHU Nan-nan CHEN Jia-xing ZHANG Lin |
Author_FL_xml | – sequence: 1 fullname: XIE Hong-tu – sequence: 2 fullname: CHEN Jia-xing – sequence: 3 fullname: ZHANG Lin – sequence: 4 fullname: ZHU Nan-nan |
Author_xml | – sequence: 1 fullname: 谢洪途 – sequence: 2 fullname: 陈佳兴 – sequence: 3 fullname: 张琳 – sequence: 4 fullname: 朱楠楠 |
BookMark | eNo9j0tLw0AcxPdQwVr7McRT4j_7zJ6kFF9QEHycyybZSIukYBB7t9QKYvCggoqePAkqerKhfhrXjd_CiCIMDMxhZn4zqJL0Eo3QnAeuh4H7C123k6aJ6wEwhwDmLgZMXSgFpIKq__k0qqdpJwAASQXDsooWzd34Y3xaDI7N8MXe39o8s5Mzm9_Yq0Exyb-OMnNysdnYMNfv5jArRs_F6K14GprRg328_Hw9n0VTsdpNdf3Pa2h7eWmrueq01lfWmo2Wk3qAieNJybmKyiNacRWHgmrOFJMMk4CGMtI4UlQClaHwsdQsFgEjvogDQYXGEJIamv_tPVBJrJKddre3v5eUi-0oiPr94AcYaIlLvgH_7WQk |
ClassificationCodes | TN957.52%TP391.4 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12068/j.issn.1005-3026.2024.04.003 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Lightweight Ship Recognition Algorithm Based on SNN in SAR Images |
EndPage | 482 |
ExternalDocumentID | dbdxxb202404003 |
GrantInformation_xml | – fundername: (广东省基础与应用基础研究基金资助项目); (广东省基础与应用基础研究基金资助项目); (深圳市科技计划资助项目); (深圳市科技计划资助项目); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金) funderid: (广东省基础与应用基础研究基金资助项目); (广东省基础与应用基础研究基金资助项目); (深圳市科技计划资助项目); (深圳市科技计划资助项目); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金) |
GroupedDBID | -03 2B. 4A8 5XA 5XD 92E 92I 93N ABDBF ABJNI ACGFS ACUHS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 EAD EAP EAS EOJEC ESX OBODZ PSX TCJ TGP U1G U5M |
ID | FETCH-LOGICAL-s1023-19966ad100ea6afc74e65a59523b4c9de2da49049c7829e5f7b5387fb747e20c3 |
ISSN | 1005-3026 |
IngestDate | Thu May 29 03:59:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | 合成孔径雷达图像 脉冲神经网络 舰船识别 synthetic aperture radar(SAR)image ship recognition spiking neural network(SNN) 轻量化 lightweight |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1023-19966ad100ea6afc74e65a59523b4c9de2da49049c7829e5f7b5387fb747e20c3 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_dbdxxb202404003 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-15 |
PublicationDateYYYYMMDD | 2024-04-15 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | 东北大学学报(自然科学版) |
PublicationTitle_FL | Journal of Northeastern University(Natural Science) |
PublicationYear | 2024 |
Publisher | 中山大学·深圳 电子与通信工程学院,广东 深圳 518107%空军预警学院,湖北 武汉 430019%中山大学 系统科学与工程学院,广东 广州 510275 |
Publisher_xml | – name: 中山大学·深圳 电子与通信工程学院,广东 深圳 518107%空军预警学院,湖北 武汉 430019%中山大学 系统科学与工程学院,广东 广州 510275 |
SSID | ssib000947529 ssib051368049 ssib023167010 ssj0040330 ssib002039846 ssib004675270 ssib006703041 ssib002263414 ssib008679651 ssib001128993 |
Score | 2.3889406 |
Snippet | TN957.52%TP391.4;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 474 |
Title | 基于脉冲神经网络的轻量化SAR图像舰船识别算法 |
URI | https://d.wanfangdata.com.cn/periodical/dbdxxb202404003 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNQWRA_i97f04JzK1iQzmY-TJNssRdCDttBbSTZZPVWwLZReLbWCWDyooKInT4KKnmypv8Z113_he2-y2aEtVr2Ex-TN-96ZN9mZN553VQVY8iTIGkEG6ZsoC7-Rw6DXUDoPYKSUpaab527ektOz4sZcNDcydtbZtbS8lE-2V_c9V_I_XoU28Cuekv0Hz9ZEoQFg8C88wcPw_CsfszRipsWSmKUCnzplqWYa0kODr7RkSchSxWJASxFIEqZbBEwxE1QtpomAibEjdIdX0JgaphUhA50mM_JOfJvYJSxJqZHTW2AHXfwBYBCIW8gacQBOSICUGcVSkIcze9vlICEmyTXJYBkpBGLBYgtMsVg6gGQ6RnVS0LqJ9JEv0I-RC8ifSGKnSLu6l0KDILLtVX_7IHV9FockmiAyhvZ-iCGKYcZ2FmQaToJGgD5EiZBs7JMZfUAZvpGoWRIgAFIjSgW4X1tC2qRjz5vS76MyCkiPpAMisMcozZAl1qaqQkBWfIKkgP5RhQoSWXIYHVY7Gy8tFlO3hAIEzQY4iWM20hyME5JzwLfQZeCuiX04R5DH4WYYS8xQXFIUGoonoGQjbLdTXT4S-RhZRwPxqZ0P3LSZEByXDMTnYDuRPcBrSTII99Z-IVJb6P_tUTcRCZOCPfDfemfax3q83Le1GwZ5gYic8U84k7yw90pV-aKwl2ftSUVCX2rKRZDDZM1hEqOKqiv7fJiD1Ttji7xYWckRB2dXfsgbC5XC_SdjcTKVtJyVkVCRs7KBZZM2bubuc6PdyoGhhHzVPZIO3Z2pWuLM76yMqA7ncMNAiAUz_OFKIQq41PQHvU16hc-5LfxSqXnYYwMjXPuTCeis5EInW7jrpPUzx71j1Xp8PLaD6wlvZPXeSe-oU6X1lHe9-27rx9bT_trj7vqX3vu3ve3N3s6z3vab3qu1_s72r0eb3ScvYHjsvv7efbjZ3_jc3_jW_7Te3fjQ-_jy59fnp73ZVjrTnG5U9840FrGQDe69kzIrQN4yk1mnrUQpoywyUchz0TZFGRaZMKB9G5ZXpow6Koe0UXVyJVQZ-m1-xhtduL9QnvPGZaGLdtAuo6zAq09F5rcLrTsB7xS84Do6741X6s9X88ri_K4QuHAwykXvyHCsuuSNLj1YLi_DWmkpv1LFzW88bvlP |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%84%89%E5%86%B2%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E8%BD%BB%E9%87%8F%E5%8C%96SAR%E5%9B%BE%E5%83%8F%E8%88%B0%E8%88%B9%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95&rft.jtitle=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E8%B0%A2%E6%B4%AA%E9%80%94&rft.au=%E9%99%88%E4%BD%B3%E5%85%B4&rft.au=%E5%BC%A0%E7%90%B3&rft.au=%E6%9C%B1%E6%A5%A0%E6%A5%A0&rft.date=2024-04-15&rft.pub=%E4%B8%AD%E5%B1%B1%E5%A4%A7%E5%AD%A6%C2%B7%E6%B7%B1%E5%9C%B3+%E7%94%B5%E5%AD%90%E4%B8%8E%E9%80%9A%E4%BF%A1%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C+%E6%B7%B1%E5%9C%B3+518107%25%E7%A9%BA%E5%86%9B%E9%A2%84%E8%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89+430019%25%E4%B8%AD%E5%B1%B1%E5%A4%A7%E5%AD%A6+%E7%B3%BB%E7%BB%9F%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E+510275&rft.issn=1005-3026&rft.volume=45&rft.issue=4&rft.spage=474&rft.epage=482&rft_id=info:doi/10.12068%2Fj.issn.1005-3026.2024.04.003&rft.externalDocID=dbdxxb202404003 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdbdxxb%2Fdbdxxb.jpg |