基于脉冲神经网络的轻量化SAR图像舰船识别算法

TN957.52%TP391.4; 针对传统方法进行合成孔径雷达(SAR)图像目标识别存在参数多、能耗高等问题,提出了一种基于脉冲神经网络(SNN)的轻量化SAR图像舰船识别算法.首先,利用视觉注意力机制提取SAR图像视觉显著图,采用泊松编码器进行脉冲序列编码,能抑制背景噪声干扰.然后,结合泄漏整合发射(LIF)脉冲神经元和卷积神经网络,构建融合时序信息的SNN模型,能实现SAR图像舰船识别.最后,采用反正切函数作为反向传播时脉冲发射函数的梯度替代函数对SNN模型进行优化,能解决模型难以训练的问题.实验结果表明所提算法具有高精度、少参数、高效率和低能耗等优势,能实现SAR图像高效准确舰船识别....

Full description

Saved in:
Bibliographic Details
Published in东北大学学报(自然科学版) Vol. 45; no. 4; pp. 474 - 482
Main Authors 谢洪途, 陈佳兴, 张琳, 朱楠楠
Format Journal Article
LanguageChinese
Published 中山大学·深圳 电子与通信工程学院,广东 深圳 518107%空军预警学院,湖北 武汉 430019%中山大学 系统科学与工程学院,广东 广州 510275 15.04.2024
Subjects
Online AccessGet full text
ISSN1005-3026
DOI10.12068/j.issn.1005-3026.2024.04.003

Cover

Abstract TN957.52%TP391.4; 针对传统方法进行合成孔径雷达(SAR)图像目标识别存在参数多、能耗高等问题,提出了一种基于脉冲神经网络(SNN)的轻量化SAR图像舰船识别算法.首先,利用视觉注意力机制提取SAR图像视觉显著图,采用泊松编码器进行脉冲序列编码,能抑制背景噪声干扰.然后,结合泄漏整合发射(LIF)脉冲神经元和卷积神经网络,构建融合时序信息的SNN模型,能实现SAR图像舰船识别.最后,采用反正切函数作为反向传播时脉冲发射函数的梯度替代函数对SNN模型进行优化,能解决模型难以训练的问题.实验结果表明所提算法具有高精度、少参数、高效率和低能耗等优势,能实现SAR图像高效准确舰船识别.
AbstractList TN957.52%TP391.4; 针对传统方法进行合成孔径雷达(SAR)图像目标识别存在参数多、能耗高等问题,提出了一种基于脉冲神经网络(SNN)的轻量化SAR图像舰船识别算法.首先,利用视觉注意力机制提取SAR图像视觉显著图,采用泊松编码器进行脉冲序列编码,能抑制背景噪声干扰.然后,结合泄漏整合发射(LIF)脉冲神经元和卷积神经网络,构建融合时序信息的SNN模型,能实现SAR图像舰船识别.最后,采用反正切函数作为反向传播时脉冲发射函数的梯度替代函数对SNN模型进行优化,能解决模型难以训练的问题.实验结果表明所提算法具有高精度、少参数、高效率和低能耗等优势,能实现SAR图像高效准确舰船识别.
Abstract_FL Due to the more parameters and higher energy-consumption in the traditional methods for the synthetic aperture radar(SAR)image target recognition,this paper proposes a lightweight ship recognition algorithm based on the spiking neural network(SNN)in SAR images.Firsty,the visual attention mechanism is adopted to extract the visual saliency map from SAR images,and the Poisson encoder is adopted for the spike train encode,which can suppress the background noise interference.Then,combined with the leaky integrate-and-fire(LIF)spiking neuron and convolutional neural network,the SNN model integrating the time series information is constructed,which can realize the ship recognition in SAR images.Finally,the SNN model is optimized by using the arctangent function as the surrogate gradient function of the spiking emission function during the backpropagation,which can solve the problem that the SNN model is difficult to train.The experiment results show that the proposed algorithm has higher accuracy,fewer parameters,higher efficiency,and lower energy-consumption,which can achieve efficient and accurate ship recognition in SAR images.
Author 张琳
朱楠楠
谢洪途
陈佳兴
AuthorAffiliation 中山大学·深圳 电子与通信工程学院,广东 深圳 518107%空军预警学院,湖北 武汉 430019%中山大学 系统科学与工程学院,广东 广州 510275
AuthorAffiliation_xml – name: 中山大学·深圳 电子与通信工程学院,广东 深圳 518107%空军预警学院,湖北 武汉 430019%中山大学 系统科学与工程学院,广东 广州 510275
Author_FL XIE Hong-tu
ZHU Nan-nan
CHEN Jia-xing
ZHANG Lin
Author_FL_xml – sequence: 1
  fullname: XIE Hong-tu
– sequence: 2
  fullname: CHEN Jia-xing
– sequence: 3
  fullname: ZHANG Lin
– sequence: 4
  fullname: ZHU Nan-nan
Author_xml – sequence: 1
  fullname: 谢洪途
– sequence: 2
  fullname: 陈佳兴
– sequence: 3
  fullname: 张琳
– sequence: 4
  fullname: 朱楠楠
BookMark eNo9j0tLw0AcxPdQwVr7McRT4j_7zJ6kFF9QEHycyybZSIukYBB7t9QKYvCggoqePAkqerKhfhrXjd_CiCIMDMxhZn4zqJL0Eo3QnAeuh4H7C123k6aJ6wEwhwDmLgZMXSgFpIKq__k0qqdpJwAASQXDsooWzd34Y3xaDI7N8MXe39o8s5Mzm9_Yq0Exyb-OMnNysdnYMNfv5jArRs_F6K14GprRg328_Hw9n0VTsdpNdf3Pa2h7eWmrueq01lfWmo2Wk3qAieNJybmKyiNacRWHgmrOFJMMk4CGMtI4UlQClaHwsdQsFgEjvogDQYXGEJIamv_tPVBJrJKddre3v5eUi-0oiPr94AcYaIlLvgH_7WQk
ClassificationCodes TN957.52%TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12068/j.issn.1005-3026.2024.04.003
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Lightweight Ship Recognition Algorithm Based on SNN in SAR Images
EndPage 482
ExternalDocumentID dbdxxb202404003
GrantInformation_xml – fundername: (广东省基础与应用基础研究基金资助项目); (广东省基础与应用基础研究基金资助项目); (深圳市科技计划资助项目); (深圳市科技计划资助项目); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金)
  funderid: (广东省基础与应用基础研究基金资助项目); (广东省基础与应用基础研究基金资助项目); (深圳市科技计划资助项目); (深圳市科技计划资助项目); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金)
GroupedDBID -03
2B.
4A8
5XA
5XD
92E
92I
93N
ABDBF
ABJNI
ACGFS
ACUHS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
EAD
EAP
EAS
EOJEC
ESX
OBODZ
PSX
TCJ
TGP
U1G
U5M
ID FETCH-LOGICAL-s1023-19966ad100ea6afc74e65a59523b4c9de2da49049c7829e5f7b5387fb747e20c3
ISSN 1005-3026
IngestDate Thu May 29 03:59:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords 合成孔径雷达图像
脉冲神经网络
舰船识别
synthetic aperture radar(SAR)image
ship recognition
spiking neural network(SNN)
轻量化
lightweight
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1023-19966ad100ea6afc74e65a59523b4c9de2da49049c7829e5f7b5387fb747e20c3
PageCount 9
ParticipantIDs wanfang_journals_dbdxxb202404003
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationTitle 东北大学学报(自然科学版)
PublicationTitle_FL Journal of Northeastern University(Natural Science)
PublicationYear 2024
Publisher 中山大学·深圳 电子与通信工程学院,广东 深圳 518107%空军预警学院,湖北 武汉 430019%中山大学 系统科学与工程学院,广东 广州 510275
Publisher_xml – name: 中山大学·深圳 电子与通信工程学院,广东 深圳 518107%空军预警学院,湖北 武汉 430019%中山大学 系统科学与工程学院,广东 广州 510275
SSID ssib000947529
ssib051368049
ssib023167010
ssj0040330
ssib002039846
ssib004675270
ssib006703041
ssib002263414
ssib008679651
ssib001128993
Score 2.3889406
Snippet TN957.52%TP391.4;...
SourceID wanfang
SourceType Aggregation Database
StartPage 474
Title 基于脉冲神经网络的轻量化SAR图像舰船识别算法
URI https://d.wanfangdata.com.cn/periodical/dbdxxb202404003
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNQWRA_i97f04JzK1iQzmY-TJNssRdCDttBbSTZZPVWwLZReLbWCWDyooKInT4KKnmypv8Z113_he2-y2aEtVr2Ex-TN-96ZN9mZN553VQVY8iTIGkEG6ZsoC7-Rw6DXUDoPYKSUpaab527ektOz4sZcNDcydtbZtbS8lE-2V_c9V_I_XoU28Cuekv0Hz9ZEoQFg8C88wcPw_CsfszRipsWSmKUCnzplqWYa0kODr7RkSchSxWJASxFIEqZbBEwxE1QtpomAibEjdIdX0JgaphUhA50mM_JOfJvYJSxJqZHTW2AHXfwBYBCIW8gacQBOSICUGcVSkIcze9vlICEmyTXJYBkpBGLBYgtMsVg6gGQ6RnVS0LqJ9JEv0I-RC8ifSGKnSLu6l0KDILLtVX_7IHV9FockmiAyhvZ-iCGKYcZ2FmQaToJGgD5EiZBs7JMZfUAZvpGoWRIgAFIjSgW4X1tC2qRjz5vS76MyCkiPpAMisMcozZAl1qaqQkBWfIKkgP5RhQoSWXIYHVY7Gy8tFlO3hAIEzQY4iWM20hyME5JzwLfQZeCuiX04R5DH4WYYS8xQXFIUGoonoGQjbLdTXT4S-RhZRwPxqZ0P3LSZEByXDMTnYDuRPcBrSTII99Z-IVJb6P_tUTcRCZOCPfDfemfax3q83Le1GwZ5gYic8U84k7yw90pV-aKwl2ftSUVCX2rKRZDDZM1hEqOKqiv7fJiD1Ttji7xYWckRB2dXfsgbC5XC_SdjcTKVtJyVkVCRs7KBZZM2bubuc6PdyoGhhHzVPZIO3Z2pWuLM76yMqA7ncMNAiAUz_OFKIQq41PQHvU16hc-5LfxSqXnYYwMjXPuTCeis5EInW7jrpPUzx71j1Xp8PLaD6wlvZPXeSe-oU6X1lHe9-27rx9bT_trj7vqX3vu3ve3N3s6z3vab3qu1_s72r0eb3ScvYHjsvv7efbjZ3_jc3_jW_7Te3fjQ-_jy59fnp73ZVjrTnG5U9840FrGQDe69kzIrQN4yk1mnrUQpoywyUchz0TZFGRaZMKB9G5ZXpow6Koe0UXVyJVQZ-m1-xhtduL9QnvPGZaGLdtAuo6zAq09F5rcLrTsB7xS84Do6741X6s9X88ri_K4QuHAwykXvyHCsuuSNLj1YLi_DWmkpv1LFzW88bvlP
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%84%89%E5%86%B2%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E8%BD%BB%E9%87%8F%E5%8C%96SAR%E5%9B%BE%E5%83%8F%E8%88%B0%E8%88%B9%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95&rft.jtitle=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E8%B0%A2%E6%B4%AA%E9%80%94&rft.au=%E9%99%88%E4%BD%B3%E5%85%B4&rft.au=%E5%BC%A0%E7%90%B3&rft.au=%E6%9C%B1%E6%A5%A0%E6%A5%A0&rft.date=2024-04-15&rft.pub=%E4%B8%AD%E5%B1%B1%E5%A4%A7%E5%AD%A6%C2%B7%E6%B7%B1%E5%9C%B3+%E7%94%B5%E5%AD%90%E4%B8%8E%E9%80%9A%E4%BF%A1%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C+%E6%B7%B1%E5%9C%B3+518107%25%E7%A9%BA%E5%86%9B%E9%A2%84%E8%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89+430019%25%E4%B8%AD%E5%B1%B1%E5%A4%A7%E5%AD%A6+%E7%B3%BB%E7%BB%9F%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E+510275&rft.issn=1005-3026&rft.volume=45&rft.issue=4&rft.spage=474&rft.epage=482&rft_id=info:doi/10.12068%2Fj.issn.1005-3026.2024.04.003&rft.externalDocID=dbdxxb202404003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdbdxxb%2Fdbdxxb.jpg