基于MRAU视频分割模型的矿井涌(突)水风险识别方法

TD742; 矿井涌(突)水视频识别是智能化矿井建设的关键之一,通过识别涌(突)水从无到有、从小到大的动态演变过程,有助于防止水量超出矿井排水能力并演变为水害.为此提出了一种基于多通道残差注意力机制的U2Net视频分割模型(MRAU),旨在识别涌(突)水的演变过程.首先,基于卷积注意力模块(CBAM)改进U2Net网络模型,以提高特征提取效果.通过多通道残差预处理,区分水流动态特征与静态背景,并将处理结果作为注意力机制输入模型,从而强化水流特征的学习.此外,使用中间帧掩码作为标签进行多帧融合学习,进一步提升网络对水流动态特征的识别能力.最终,通过学习不同场景下的水流特征,实现对未知场景中涌(突...

Full description

Saved in:
Bibliographic Details
Published in煤炭科学技术 Vol. 52; no. 11; pp. 17 - 28
Main Authors 武强, 张帅, 杜沅泽, 徐华, 赵颖旺
Format Journal Article
LanguageChinese
Published 中国矿业大学(北京)国家煤矿水害防治工程技术研究中心,北京 100083 01.11.2024
矿业大学(北京)内蒙古研究院,内蒙古 鄂尔多斯 017000
矿山水防治与资源化利用国家矿山安全监察局重点实验室,北京 100083%北京石油化工学院信息工程学院,北京 102617
Subjects
Online AccessGet full text
ISSN0253-2336
DOI10.12438/cst.2024-1370

Cover

Abstract TD742; 矿井涌(突)水视频识别是智能化矿井建设的关键之一,通过识别涌(突)水从无到有、从小到大的动态演变过程,有助于防止水量超出矿井排水能力并演变为水害.为此提出了一种基于多通道残差注意力机制的U2Net视频分割模型(MRAU),旨在识别涌(突)水的演变过程.首先,基于卷积注意力模块(CBAM)改进U2Net网络模型,以提高特征提取效果.通过多通道残差预处理,区分水流动态特征与静态背景,并将处理结果作为注意力机制输入模型,从而强化水流特征的学习.此外,使用中间帧掩码作为标签进行多帧融合学习,进一步提升网络对水流动态特征的识别能力.最终,通过学习不同场景下的水流特征,实现对未知场景中涌(突)水动态演变的有效识别.通过与Deeplab、LRASPP、FCN、U2Net网络模型的对比试验,选用Dice和IoU作为评价指标.试验结果表明,MRAU模型的Dice和IoU分别达到 92.88%和 87.51%,相比U2Net基础网络,识别结果分别提高了 4.71%和 7.41%.在未知的涌(突)水场景中测试时,MRAU的 Dice和 IoU得分分别达到了86.75%和 80.23%.与其他模型相比,MRAU的识别精度最高,表明该模型在不同场景下对水流特征具有更强的泛化能力.此外,MRAU能够精准监测涌(突)水流量从小到大的演变过程.最后,通过在井下环境中模拟突水场景,进一步验证MRAU模型在实际生产中的实用性,为矿井水害监测提供了有效的技术手段.
AbstractList TD742; 矿井涌(突)水视频识别是智能化矿井建设的关键之一,通过识别涌(突)水从无到有、从小到大的动态演变过程,有助于防止水量超出矿井排水能力并演变为水害.为此提出了一种基于多通道残差注意力机制的U2Net视频分割模型(MRAU),旨在识别涌(突)水的演变过程.首先,基于卷积注意力模块(CBAM)改进U2Net网络模型,以提高特征提取效果.通过多通道残差预处理,区分水流动态特征与静态背景,并将处理结果作为注意力机制输入模型,从而强化水流特征的学习.此外,使用中间帧掩码作为标签进行多帧融合学习,进一步提升网络对水流动态特征的识别能力.最终,通过学习不同场景下的水流特征,实现对未知场景中涌(突)水动态演变的有效识别.通过与Deeplab、LRASPP、FCN、U2Net网络模型的对比试验,选用Dice和IoU作为评价指标.试验结果表明,MRAU模型的Dice和IoU分别达到 92.88%和 87.51%,相比U2Net基础网络,识别结果分别提高了 4.71%和 7.41%.在未知的涌(突)水场景中测试时,MRAU的 Dice和 IoU得分分别达到了86.75%和 80.23%.与其他模型相比,MRAU的识别精度最高,表明该模型在不同场景下对水流特征具有更强的泛化能力.此外,MRAU能够精准监测涌(突)水流量从小到大的演变过程.最后,通过在井下环境中模拟突水场景,进一步验证MRAU模型在实际生产中的实用性,为矿井水害监测提供了有效的技术手段.
Abstract_FL Mine water inrush video recognition is a key component in intelligent mine construction.By recognizing the dynamic evolution of water inrush from none to some and from small to large,it helps prevent the water volume from exceeding the mine's drainage capacity and turning into a water hazard.Therefore,a video segmentation model based on the Multi-channel Residual Attention mechanism and U2Net(MRAU)was proposed to identify the evolution process of water inrush.First,the U2Net network model was improved based on the Convolutional Block Attention Module(CBAM)to enhance feature extraction.Then,through multi-channel residual preprocessing,the dynamic features of water flow were distinguished from the static background,and the processed results were input into the model as an at-tention mechanism to reinforce the learning of water flow features.In addition,intermediate frame masks were used as labels for multi-frame fusion learning,further enhancing the network's ability to recognize the dynamic features of water flow.Finally,by learning the wa-ter flow features in different scenarios,the model effectively recognizes the dynamic changes of water inrush in unknown scenarios.Com-parative experiments with Deeplab,LRASPP,FCN,and U2Net network models,using Dice and IoU as evaluation metrics,show that the Dice and IoU of the MRAU model reach 92.88%and 87.51%,respectively,which represents improvements of 4.71%and 7.41%over the baseline U2Net network.When tested in unknown water inrush scenarios,the MRAU model achieves Dice and IoU scores of 86.75%and 80.23%.Compared to other models,MRAU achieves the highest recognition accuracy,demonstrating stronger generalization capabilities in recognizing water flow features across different scenarios.Moreover,MRAU can accurately monitor the dynamic evolution of water in-rush from small to large.Finally,simulations of water inrush scenarios in underground environments further verify the practical utility of the MRAU model in real-world production,providing an effective technical solution for mine water hazard monitoring.
Author 武强
赵颖旺
杜沅泽
徐华
张帅
AuthorAffiliation 矿业大学(北京)内蒙古研究院,内蒙古 鄂尔多斯 017000;中国矿业大学(北京)国家煤矿水害防治工程技术研究中心,北京 100083;矿山水防治与资源化利用国家矿山安全监察局重点实验室,北京 100083%北京石油化工学院信息工程学院,北京 102617
AuthorAffiliation_xml – name: 矿业大学(北京)内蒙古研究院,内蒙古 鄂尔多斯 017000;中国矿业大学(北京)国家煤矿水害防治工程技术研究中心,北京 100083;矿山水防治与资源化利用国家矿山安全监察局重点实验室,北京 100083%北京石油化工学院信息工程学院,北京 102617
Author_FL WU Qiang
DU Yuanze
ZHANG Shuai
XU Hua
ZHAO Yingwang
Author_FL_xml – sequence: 1
  fullname: WU Qiang
– sequence: 2
  fullname: ZHANG Shuai
– sequence: 3
  fullname: DU Yuanze
– sequence: 4
  fullname: XU Hua
– sequence: 5
  fullname: ZHAO Yingwang
Author_xml – sequence: 1
  fullname: 武强
– sequence: 2
  fullname: 张帅
– sequence: 3
  fullname: 杜沅泽
– sequence: 4
  fullname: 徐华
– sequence: 5
  fullname: 赵颖旺
BookMark eNrjYmDJy89LZWAQMzTQMzQyMbbQTy4u0TMyMDLRNTQ2N2Bh4DQwMjXWNTI2NuNg4C0uzkwyMAVKmBgamHEyOD2dv-vJrj7fIMfQF8vbXi6a-LSj7WnnpmcrFj6d1_18Vsvz-fuf7Jr6bFuPxvNVjZrPNmx5ubjv5cyVL9a3Pe1Y_Wzazmebp_IwsKYl5hSn8kJpboZQN9cQZw9dH393T2dHH91iQwMjI13zFGMjE8tEYyMDSwsTCwNLIGloaWBhmJxqkWhilmJqZGJimJxkampoYmFhkmRuapGUZJlmbJgKVGJsnAwkuBnUIeaWJ-alJealx2fllxblAW2Mzy3JrsgqBvnY0NDAwMgYAHPzX9Y
ClassificationCodes TD742
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12438/cst.2024-1370
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Mine water inrush risk identification method based on MRAU video segmentation model
EndPage 28
ExternalDocumentID mtkxjs202411002
GrantInformation_xml – fundername: (国家自然科学基金); (国家自然科学基金); (中央高校基本科研业务费资助项目)
  funderid: (国家自然科学基金); (国家自然科学基金); (中央高校基本科研业务费资助项目)
GroupedDBID -02
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1022-7d3249a32098480998419081ce8a46d52441cb5514884b758bb9f31e08133c813
ISSN 0253-2336
IngestDate Thu May 29 04:07:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords 视频分割
注意力机制
矿井涌(突)水
mine water inrush
U2Net
multichannel residual preprocessing
attention mechanism
video segmentation
MRAU
多通道残差预处理
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1022-7d3249a32098480998419081ce8a46d52441cb5514884b758bb9f31e08133c813
PageCount 12
ParticipantIDs wanfang_journals_mtkxjs202411002
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle 煤炭科学技术
PublicationTitle_FL Coal Science and Technology
PublicationYear 2024
Publisher 中国矿业大学(北京)国家煤矿水害防治工程技术研究中心,北京 100083
矿业大学(北京)内蒙古研究院,内蒙古 鄂尔多斯 017000
矿山水防治与资源化利用国家矿山安全监察局重点实验室,北京 100083%北京石油化工学院信息工程学院,北京 102617
Publisher_xml – name: 中国矿业大学(北京)国家煤矿水害防治工程技术研究中心,北京 100083
– name: 矿山水防治与资源化利用国家矿山安全监察局重点实验室,北京 100083%北京石油化工学院信息工程学院,北京 102617
– name: 矿业大学(北京)内蒙古研究院,内蒙古 鄂尔多斯 017000
SSID ssib051374106
ssj0037581
ssib001105251
ssib012291398
ssib036204842
Score 2.3709204
Snippet TD742;...
SourceID wanfang
SourceType Aggregation Database
StartPage 17
Title 基于MRAU视频分割模型的矿井涌(突)水风险识别方法
URI https://d.wanfangdata.com.cn/periodical/mtkxjs202411002
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LaxNBGF9qvehBfOKbHhxQJLo7j92Z426yoQj1IC30VrKbrKIYwaQgvQlSKkrBQwU9WNSDr4OiIpiL_0yTNP4Vft-3k-22FXxAGCaz33yP37ez880wD8c5lwVJM3N1WuGqmcEARRm8yL1RUVmLiyDJgoaL-51nrvrTc_LKvJqf2POztGppsZtcSpd-u6_kf7wKZeBX3CX7D54tmEIB5MG_kIKHIf0rH7NYMVNnUchiiamOZ66FcyzWLAyY9llsWMiZ8ZBOayqBjGERZ7HPQiCjRyZmOmJxwAywkJQBpnXL1CgkjnymqxCN4tMQyOADaKjcZZEkQQLEY8ZA3pAO9bFEyEdIbIA-ryVYfunlOC5GtlqxkKRrzsIaCQqs8vA39LGiDnFpBrKqAv_x20LW5CSKRVW2NflgC0KXMgCBKtcxNeSD-nCUnisW1bZVjpmhyroG9pXnSLi0mwXHbzXhpUl1wDQCRtuh1IhvTEaCYYVViKlCcE1gEQ-rBG7BBChjdEAZI8u2cEBOI8gB2joY0igiIwBKRYBq8vROHOmRywxxBuehrJItIEgLaIu79bzoUXRd6k24EhUu8tNmxl2f4uUm7pU6snxDrQ2J8u37uzpbLuls_bSDa5IRdJHfAbPjAPPb3Vv3bnaQAo8nhHBpLw-CfEmFnf6g0N3DGxWLvsbjHA-sLfoGgfcmaFmE4gqESVohkEddAsa9dDvm2Ex7QCvqeHmbhrQ7r5012tdLgeTsQeeAHQFOhXlzPuRMLN047OwvnQt6xIn6672N3io25s03y6NXT_ory_2HnwdvX_ZfPBo-fzBc_7HRWxt8e3x--P7-hcGnr6PXq6Nn7zY_LvdXPgyefh98WTvqzNXj2ep0xV52UungpEslaMLQxjQEd42WGsZtWkKsrr20pRvSbyoIw700wfGN1jIBa5PEZMJrAYkQKSTHnMn2nXbruDPFm35LJpkERDyJ8x3wU02RZSJ1vYaXnXCmLAIL9mPWWdjhpJN_Jjnl7Ntqaqedye7dxdYZCNC7yVny7C_LgKYe
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMRAU%E8%A7%86%E9%A2%91%E5%88%86%E5%89%B2%E6%A8%A1%E5%9E%8B%E7%9A%84%E7%9F%BF%E4%BA%95%E6%B6%8C%28%E7%AA%81%29%E6%B0%B4%E9%A3%8E%E9%99%A9%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E7%85%A4%E7%82%AD%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF&rft.au=%E6%AD%A6%E5%BC%BA&rft.au=%E5%BC%A0%E5%B8%85&rft.au=%E6%9D%9C%E6%B2%85%E6%B3%BD&rft.au=%E5%BE%90%E5%8D%8E&rft.date=2024-11-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%28%E5%8C%97%E4%BA%AC%29%E5%9B%BD%E5%AE%B6%E7%85%A4%E7%9F%BF%E6%B0%B4%E5%AE%B3%E9%98%B2%E6%B2%BB%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100083&rft.issn=0253-2336&rft.volume=52&rft.issue=11&rft.spage=17&rft.epage=28&rft_id=info:doi/10.12438%2Fcst.2024-1370&rft.externalDocID=mtkxjs202411002
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fmtkxjs%2Fmtkxjs.jpg