大气扩散应急预报的风场不确定性影响研究

使用 WRF 模式和 CALMET 模式, 获得一个 40 km 区域的细网格气象预报场, 同时利用加入地面观测资料的方法获得当地诊断风场.用随机粒子扩散模式模拟两种风场驱动下的扩散结果, 并比较和评估预报模拟的偏差或不确定性.对 4 个季节的代表性月份(1, 4, 7 和 10 月)的逐时排放情况以及 4 个排放高度的情景进行模拟分析.结果表明: 1) 预报模拟的烟云扩散形态(方向和宽度等)在当地大多数时段内(约占全年的 80%)与诊断分析的实际扩散结果一致, 且季节变化不大, 其余时段为扩散形态有中度偏差和有明显差异的情况,二者各占 10%左右; 2) 地面轴线浓度的不确定性随下风距离及污...

Full description

Saved in:
Bibliographic Details
Published in北京大学学报(自然科学版) Vol. 55; no. 5; pp. 877 - 885
Main Authors 郑宇凡, 蔡旭晖, 康凌, 张宏升, 宋宇
Format Journal Article
LanguageChinese
Published 北京大学环境科学与工程学院环境科学系,北京,100871%北京大学物理学院大气与海洋科学系,北京,100871 20.09.2019
Subjects
Online AccessGet full text
ISSN0479-8023
DOI10.13209/j.0479-8023.2019.058

Cover

Abstract 使用 WRF 模式和 CALMET 模式, 获得一个 40 km 区域的细网格气象预报场, 同时利用加入地面观测资料的方法获得当地诊断风场.用随机粒子扩散模式模拟两种风场驱动下的扩散结果, 并比较和评估预报模拟的偏差或不确定性.对 4 个季节的代表性月份(1, 4, 7 和 10 月)的逐时排放情况以及 4 个排放高度的情景进行模拟分析.结果表明: 1) 预报模拟的烟云扩散形态(方向和宽度等)在当地大多数时段内(约占全年的 80%)与诊断分析的实际扩散结果一致, 且季节变化不大, 其余时段为扩散形态有中度偏差和有明显差异的情况,二者各占 10%左右; 2) 地面轴线浓度的不确定性随下风距离及污染排放高度而变化, 20~100 m各高度的排放结果大致在 2~4 km 的下风距离出现最大偏差, 但 100 m 的高源排放在约 2 km 以内的范围也有很大的预报不确定性; 3) 两种情况造成当地扩散预报结果的明显偏差, 一是气象场预报的局地风场发生重要转变的时间不一致, 使预报风场与实际风场处于转变前后的不同步状态, 从而使污染扩散预报结果出现重大偏差, 二是 WRF模式对地面风速的预报系统性地偏大(50%左右), 造成预报模拟浓度结果系统性地偏小.
AbstractList 使用 WRF 模式和 CALMET 模式, 获得一个 40 km 区域的细网格气象预报场, 同时利用加入地面观测资料的方法获得当地诊断风场.用随机粒子扩散模式模拟两种风场驱动下的扩散结果, 并比较和评估预报模拟的偏差或不确定性.对 4 个季节的代表性月份(1, 4, 7 和 10 月)的逐时排放情况以及 4 个排放高度的情景进行模拟分析.结果表明: 1) 预报模拟的烟云扩散形态(方向和宽度等)在当地大多数时段内(约占全年的 80%)与诊断分析的实际扩散结果一致, 且季节变化不大, 其余时段为扩散形态有中度偏差和有明显差异的情况,二者各占 10%左右; 2) 地面轴线浓度的不确定性随下风距离及污染排放高度而变化, 20~100 m各高度的排放结果大致在 2~4 km 的下风距离出现最大偏差, 但 100 m 的高源排放在约 2 km 以内的范围也有很大的预报不确定性; 3) 两种情况造成当地扩散预报结果的明显偏差, 一是气象场预报的局地风场发生重要转变的时间不一致, 使预报风场与实际风场处于转变前后的不同步状态, 从而使污染扩散预报结果出现重大偏差, 二是 WRF模式对地面风速的预报系统性地偏大(50%左右), 造成预报模拟浓度结果系统性地偏小.
Abstract_FL This paper studies deviations and uncertainties of atmospheric diffusion caused by wind field fore-casting, in conditions of emergency release. WRF and CALMET were used to create a 40 km fine-mesh meteorolo-gical forecast field and a diagnostic field with local data. In the simulation, we traced the emissions in January, April, July and October which are representative of four seasons and the emissions in four typical situations. The analysis shows that the forecasts are consistent with the diagnosis in 80% of the year and the change of seasons does not affect significantly, while the rest 20% is shared by different plume shape and significant deviations, each accounting for about 10%. Downwind concentration varies with emission height and downwind distance. The maximum deviation occurs when the height is 20–100 m and the distance is 2–4 km, while the result is highly uncertain when the height is 100 m and the distance is shorter than 2 km. The significant deviations occur in two situations. In the first, the time of the important transition of the local wind field predicted by the meteorological field is inconsistent, so that the forecast wind field and the actual wind field are in an asynchronous state before and after the transition, which causes a major deviation in the pollution diffusion forecast results. In the second, WRF, which systematically overestimates the wind speed (at 50% approximately), leads to systematically lower forecasted concentration.
Author 郑宇凡
张宏升
蔡旭晖
康凌
宋宇
AuthorAffiliation 北京大学环境科学与工程学院环境科学系,北京,100871%北京大学物理学院大气与海洋科学系,北京,100871
AuthorAffiliation_xml – name: 北京大学环境科学与工程学院环境科学系,北京,100871%北京大学物理学院大气与海洋科学系,北京,100871
Author_FL ZHENG Yufan
KANG Ling
ZHANG Hongsheng
CAI Xuhui
SONG Yu
Author_FL_xml – sequence: 1
  fullname: ZHENG Yufan
– sequence: 2
  fullname: CAI Xuhui
– sequence: 3
  fullname: KANG Ling
– sequence: 4
  fullname: ZHANG Hongsheng
– sequence: 5
  fullname: SONG Yu
Author_xml – sequence: 1
  fullname: 郑宇凡
– sequence: 2
  fullname: 蔡旭晖
– sequence: 3
  fullname: 康凌
– sequence: 4
  fullname: 张宏升
– sequence: 5
  fullname: 宋宇
BookMark eNo9jz1LA0EYhLeIYIz5CdZWd777cXv7lhL8goCN1mH3cicecgEPMWWKNAqxMTYhhRpDSBO0EQn4b9w98i88UayGmWJmng1SyTpZTMgWBZ9yBriT-iBC9BQw7jOg6EOgKqT6H66Tep6fG6CMKZSCVgnal5l7HbqbuXuY2OXQ9aar5767nRaj_mpyZ8fLr49B8bSwi5Hrzeznm70fFI_DYv6-SdYSfZHH9T-tkdP9vZPGodc8Pjhq7Da9nAJjXvmrbZhhKgx5FHOJItKJUgIjGWhZmgiMxARjIYThKDUPQwHaYAxCCkBeI9u_vdc6S3R21ko7V5dZudgyabvbNT-cEJRI_BtauF5Y
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13209/j.0479-8023.2019.058
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL Study of the Influence of Wind Field Uncertainty in Atmospheric Diffusion Emergency Forecast
EndPage 885
ExternalDocumentID bjdxxb201905012
GrantInformation_xml – fundername: 国家重点研发计划; 生态环境部大气重污染成因与治理攻关项目; 国家自然科学基金
  funderid: (2018YFC0213204, 2017YFC0209904); (DQGG0106); (41575007, 91544216)
GroupedDBID -01
23M
2B.
4A8
5GY
8FE
8FH
92E
92I
93N
AAABJ
AAQEF
ABJNI
ABLSY
ABPYQ
ABUWG
ABVRV
ACECN
ACGFS
ACPRK
ACTRF
ADCJG
ADGMY
ADMLS
ADMQQ
ADRFT
ADZSZ
AENOO
AEXCR
AFKRA
AFSCH
AFTSM
AFZMG
AHIBC
AIVZI
AJZVN
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVBZV
CCEZO
CCPQU
CCVFK
CW9
HCIFZ
LK8
M7P
P2P
PDI
PHGZM
PHGZT
PMFND
PQQKQ
PSX
TCJ
TGP
U1G
U5K
UY8
ID FETCH-LOGICAL-s1022-320db2b28773ce3694caf8849c65a64cac0b69f9e444b396a37740ab9e0464093
ISSN 0479-8023
IngestDate Thu May 29 04:00:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords emergency response
不确定性
atmospheric diffusion
forecast simulation
应急预报
预报模拟
uncertainty
大气扩散
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1022-320db2b28773ce3694caf8849c65a64cac0b69f9e444b396a37740ab9e0464093
PageCount 9
ParticipantIDs wanfang_journals_bjdxxb201905012
PublicationCentury 2000
PublicationDate 2019-09-20
PublicationDateYYYYMMDD 2019-09-20
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-20
  day: 20
PublicationDecade 2010
PublicationTitle 北京大学学报(自然科学版)
PublicationTitle_FL Acta Scientiarum Naturalium Universitatis Pekinensis
PublicationYear 2019
Publisher 北京大学环境科学与工程学院环境科学系,北京,100871%北京大学物理学院大气与海洋科学系,北京,100871
Publisher_xml – name: 北京大学环境科学与工程学院环境科学系,北京,100871%北京大学物理学院大气与海洋科学系,北京,100871
SSID ssib012289641
ssib051370299
ssj0030172
ssib001522812
ssib002258124
ssib000862120
ssib030194702
ssib008143590
ssib002040163
ssib006703675
ssib038076459
Score 2.2242792
Snippet 使用 WRF 模式和 CALMET 模式, 获得一个 40 km 区域的细网格气象预报场, 同时利用加入地面观测资料的方法获得当地诊断风场.用随机粒子扩散模式模拟两种风场驱动下的扩散结果, 并比较和评估预报模拟的偏差或不确定性.对 4 个季节的代表性月份(1, 4, 7 和 10 月)的逐时排放情况以及 4...
SourceID wanfang
SourceType Aggregation Database
StartPage 877
Title 大气扩散应急预报的风场不确定性影响研究
URI https://d.wanfangdata.com.cn/periodical/bjdxxb201905012
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NSxwxdBC99FJqP-g3e2igPaydSTL5OM7MjkihUoqCN5kZd1o8rFAVxJMHLy3YS-1FemhrRbxIeylF6L_p7uK_6HuZ7G7UhW69DG-T9968l5fJe8kmL573qJSU6qyU9UzD3ISXjNUVBAL1kOcsKGkgSo6Hk5_Pipl5_mwhXBgbP3R2La2v5VPF5tBzJZexKpSBXfGU7H9Yts8UCgAG-8ITLAzPkWxM0pBEnESSpILEPtEcAaVJpBHQUMsQJ456VT6JQpICAiWqKolMiSQ6MiUaSVSKVDpBwpSTWBHVQJwoIJGpgifgW4bSvKJB4sBQsR5yJY9EYWLhBsGIphKipWEOAiSOIgA0SCQcoC_kNIkTohRJQR5gGyFzkDkW5i2gQuBQSWwHRK6o-usdqKJiPdwUOaE4qNwARaHooC02okSOCGiixQDFtGrcI1bJmZoEtbf8pw1Kg1iPb1dYArOFjPr9b2K0RpFom8iwRBOyYZpXBjN2Avkq60ZQEjs4GtUBDiMxlCRmJI7haxwiJE0wcZMEhxiOrELVQeEtPlFimFQXu3VfKSgxeiHAjVKXFNhxgVzqOqYodP11ldbZjkuh43yVvRDIxnHVVVAXQgRGTYrd5ak-c9zgqaf86gqBc9nX8-WljY0cEfzQx9vMJ6iUuB9kIk5nX7w8szIQUHcmQumZzH7gLAPhRs4hhtYD14eJ8JxIXuE8ZvAHdgDctBjMXMAtay4Hmfvw2gg3LVQYMKjFlYYqKGW41INBaU9ne5gRG-PpsKYwZxhbZdZ65YTbc9e8q3aeXIuqQW_SG9t8fd2btJHIau2xTZf_5Ian298OO993O2-POh_32ye7na2D06_bnXcH3b3t0_337U8nf37tdL8ct4_3OluH7d8_2h92up93u0c_b3rz0-lcMlO3F8LUVwNz6oj6SznNKRiaFU0mNC-yUimuCxFmAn4Ufi50qZucg6vRImMwufWzXDdxA4ev2S1vvLXSat72apyrXGVZUbCCmq0LzTzPZFBmfi4Dzss7Xs3qv2gH_NXFc33h7r9R7nlXBgPKfW987c168wFMYtbyh7YD_QXo2-JS
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%A7%E6%B0%94%E6%89%A9%E6%95%A3%E5%BA%94%E6%80%A5%E9%A2%84%E6%8A%A5%E7%9A%84%E9%A3%8E%E5%9C%BA%E4%B8%8D%E7%A1%AE%E5%AE%9A%E6%80%A7%E5%BD%B1%E5%93%8D%E7%A0%94%E7%A9%B6&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E9%83%91%E5%AE%87%E5%87%A1&rft.au=%E8%94%A1%E6%97%AD%E6%99%96&rft.au=%E5%BA%B7%E5%87%8C&rft.au=%E5%BC%A0%E5%AE%8F%E5%8D%87&rft.date=2019-09-20&rft.pub=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E7%8E%AF%E5%A2%83%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%E7%8E%AF%E5%A2%83%E7%A7%91%E5%AD%A6%E7%B3%BB%2C%E5%8C%97%E4%BA%AC%2C100871%25%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E9%99%A2%E5%A4%A7%E6%B0%94%E4%B8%8E%E6%B5%B7%E6%B4%8B%E7%A7%91%E5%AD%A6%E7%B3%BB%2C%E5%8C%97%E4%BA%AC%2C100871&rft.issn=0479-8023&rft.volume=55&rft.issue=5&rft.spage=877&rft.epage=885&rft_id=info:doi/10.13209%2Fj.0479-8023.2019.058&rft.externalDocID=bjdxxb201905012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjdxxb%2Fbjdxxb.jpg