基于CGA-BP神经网络的好氧堆肥曝气供氧量预测模型
TP183%TP389.1%S210.6; 为提高好氧堆肥曝气供氧量的曝气效率以及预测精度,该研究利用遗传算法(genetic algorithm,GA)对标准反向传播(back propagation,BP)神经网络的初始权值和阈值进行优化,再利用克隆选择算法(clonal genetic algorithm,CGA)优化遗传算法中的变异算子并复制算子,加快获取最优参数的速度,构建基于CGA-BP神经网络的曝气供氧量预测模型.为验证CGA-BP模型的有效性,与BP模型、GA-BP模型预测结果进行对比.试验结果表明:克隆遗传算法优化BP神经网络能加快获得最优解,效率相比 BP 模型和 GA-B...
Saved in:
Published in | 农业工程学报 Vol. 39; no. 7; pp. 211 - 217 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
黑龙江八一农垦大学信息与电气工程学院,大庆 163319%黑龙江八一农垦大学工程学院,大庆 163319
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.202211088 |
Cover
Abstract | TP183%TP389.1%S210.6; 为提高好氧堆肥曝气供氧量的曝气效率以及预测精度,该研究利用遗传算法(genetic algorithm,GA)对标准反向传播(back propagation,BP)神经网络的初始权值和阈值进行优化,再利用克隆选择算法(clonal genetic algorithm,CGA)优化遗传算法中的变异算子并复制算子,加快获取最优参数的速度,构建基于CGA-BP神经网络的曝气供氧量预测模型.为验证CGA-BP模型的有效性,与BP模型、GA-BP模型预测结果进行对比.试验结果表明:克隆遗传算法优化BP神经网络能加快获得最优解,效率相比 BP 模型和 GA-BP 模型分别提高了 75.36%、51.30%;在曝气供氧量预测模型中,CGA-BP模型具有更准确的预测效果,预测精度为99.65%,而BP模型与GA-BP模型预测精度分别为 96.99%、99.26%;CGA-BP模型评价指标的均方误差、平均绝对误差、平均绝对百分误差分别为 0.0034、0.0389 和0.3506,均小于BP神经网络和GA-BP神经网络模型评价指标的误差;利用CGA-BP好氧堆肥曝气供氧量预测模型对好氧堆肥发酵过程进行精准曝气,提高了 3.22%的曝气控制效率.由此可知CGA-BP 神经网络模型有更好的预测效果,可满足好氧堆肥在发酵过程中曝气供氧量的需求,提高曝气效率,为精准控制曝气提供更直接有效的方法. |
---|---|
AbstractList | TP183%TP389.1%S210.6; 为提高好氧堆肥曝气供氧量的曝气效率以及预测精度,该研究利用遗传算法(genetic algorithm,GA)对标准反向传播(back propagation,BP)神经网络的初始权值和阈值进行优化,再利用克隆选择算法(clonal genetic algorithm,CGA)优化遗传算法中的变异算子并复制算子,加快获取最优参数的速度,构建基于CGA-BP神经网络的曝气供氧量预测模型.为验证CGA-BP模型的有效性,与BP模型、GA-BP模型预测结果进行对比.试验结果表明:克隆遗传算法优化BP神经网络能加快获得最优解,效率相比 BP 模型和 GA-BP 模型分别提高了 75.36%、51.30%;在曝气供氧量预测模型中,CGA-BP模型具有更准确的预测效果,预测精度为99.65%,而BP模型与GA-BP模型预测精度分别为 96.99%、99.26%;CGA-BP模型评价指标的均方误差、平均绝对误差、平均绝对百分误差分别为 0.0034、0.0389 和0.3506,均小于BP神经网络和GA-BP神经网络模型评价指标的误差;利用CGA-BP好氧堆肥曝气供氧量预测模型对好氧堆肥发酵过程进行精准曝气,提高了 3.22%的曝气控制效率.由此可知CGA-BP 神经网络模型有更好的预测效果,可满足好氧堆肥在发酵过程中曝气供氧量的需求,提高曝气效率,为精准控制曝气提供更直接有效的方法. |
Author | 施雪玲 胡军 丁国超 |
AuthorAffiliation | 黑龙江八一农垦大学信息与电气工程学院,大庆 163319%黑龙江八一农垦大学工程学院,大庆 163319 |
AuthorAffiliation_xml | – name: 黑龙江八一农垦大学信息与电气工程学院,大庆 163319%黑龙江八一农垦大学工程学院,大庆 163319 |
Author_FL | DING Guochao SHI Xueling HU Jun |
Author_FL_xml | – sequence: 1 fullname: DING Guochao – sequence: 2 fullname: SHI Xueling – sequence: 3 fullname: HU Jun |
Author_xml | – sequence: 1 fullname: 丁国超 – sequence: 2 fullname: 施雪玲 – sequence: 3 fullname: 胡军 |
BookMark | eNo9j09LAkEchudgkJmfokOn3eY3u-vMHFXKAqEOdZaZ3RlRYoSGqK4hdRASoVOW_YGljl66KPZp3N38Fi0UnV54Du_zvhuoYHpGIbQF2AXgNNjpuh1rjQsYE6fCgLsEEwKAGSug4j9dR2VrOxIH4FGMfSiiWvI8W87u6o2qUzvK4kk2H2aLUTZ_zB76SbxIp-_Jy833dZyOn9Lp_fJrnJPV7XD11k8_B-nHazIZbKI1LU6tKv9lCZ3s7R7X953mYeOgXm06FvItDlE-Z6GWREcR11QKT6mIgeABJREnUoHkIVFKU8x8oXFAQ6DKD4QfkkqgpFdC27-9F8JoYdqtbu_8zOTGlrlqh5cyf-xhmqu8H_EOZiY |
ClassificationCodes | TP183%TP389.1%S210.6 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11975/j.issn.1002-6819.202211088 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitle_FL | Prediction model of the aeration oxygen supply for aerobic composting using CGA-BP neural network |
EndPage | 217 |
ExternalDocumentID | nygcxb202307022 |
GrantInformation_xml | – fundername: 国家重点研发计划 funderid: (2016YFD0800600) |
GroupedDBID | -04 2B. 4A8 5XA 5XE 92G 92I 93N ABDBF ABJNI ACGFO ACGFS ACUHS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CW9 EOJEC FIJ IPNFZ OBODZ PSX RIG TCJ TGD TUS U1G U5N |
ID | FETCH-LOGICAL-s1022-2e498cfb2fdd9f7ba3eed81a9572d92be1b9c2eef7084af057c17e45a4c265eb3 |
ISSN | 1002-6819 |
IngestDate | Thu May 29 04:08:36 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Keywords | 曝气供氧 遗传算法 BP神经网络 试验 好氧堆肥 模型 CGA-BP神经网络 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1022-2e498cfb2fdd9f7ba3eed81a9572d92be1b9c2eef7084af057c17e45a4c265eb3 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_nygcxb202307022 |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 农业工程学报 |
PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
PublicationYear | 2023 |
Publisher | 黑龙江八一农垦大学信息与电气工程学院,大庆 163319%黑龙江八一农垦大学工程学院,大庆 163319 |
Publisher_xml | – name: 黑龙江八一农垦大学信息与电气工程学院,大庆 163319%黑龙江八一农垦大学工程学院,大庆 163319 |
SSID | ssib051370041 ssj0041925 ssib001101065 ssib023167668 |
Score | 2.3939316 |
Snippet | TP183%TP389.1%S210.6; 为提高好氧堆肥曝气供氧量的曝气效率以及预测精度,该研究利用遗传算法(genetic algorithm,GA)对标准反向传播(back propagation,BP)神经网络的初始权值和阈值进行优化,再利用克隆选择算法(clonal genetic... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 211 |
Title | 基于CGA-BP神经网络的好氧堆肥曝气供氧量预测模型 |
URI | https://d.wanfangdata.com.cn/periodical/nygcxb202307022 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1NaxQxdCgtiB7ET_ymoDnJrDOZZCbBU7KdtQiKhxZ6K5P5qKcV2i1oj1L0ULAInqzWD1j02IuXlvprurv2X_hednZ3Wr8VL0N47-V9zuS9hCTjONcKSr0CUqkLgz93WeplrjGZcfMsz2HSYkTC8Lzznbvh9Cy7PcfnxsZvVnYtLbdMLV357rmSv4kqwCCueEr2DyI7ZAoAaEN84QkRhudvxZjEnMgG0YrEDJ8irt9Srr5H4ogoQMXY0JqIhm1MEemXEFnHhoQuDJkAMWDjkGiPqMhCPCJCEgsiKGIBJaHXgEYyKzFG4KiXJCKysiRR1HIGFCfC0ihBlG8VjgFSrYkRCLJQJeApUCuAaGsCGiIsB1BpiqgQWQkFqMGbUnYSfd7a2iGIBqoKCXAPLUYiiVLIV8RE0xEJsAhKDVEZXV0OoUFlFw2-wMgIvejbBrhBWlt9jAYyAGX1QDGvYp-1Ho0AAjbwdN8sIG5Y-SHaohqD7jaG4G_NK77_iXskKgPup_UDUvDtCK9DWQyDIaH8PxjwbzpVkiNmz1CUoDJ7BrIySkQHUqFfqapo_4TutwlbRtxmbJRQG0qoQWhxaaL_y8dDN6I3Hy2kDw0GH_IVhfprgkYR7tGYUHpKN0azAR8XPIbpiuKlD-Fods39AP_tMNwRhvshuN0cUSpxxLk6UPHGjxW0p_2aRdJcqBSmMyec4-WMclL1h4eTztjK_VPOMbWwWN6qk592dOfN9t72s_7g0Gtv9nbWe7vPezuvei9XO-3d7taHztsnXx63uxuvu1sv9j5vAGT_6fr--9Xup7Xux3edzbUzzmwjnqlPu-XPU9wlXMRxac6kSAtDiyyTRWSSAKph4SeSRzST1OS-kSnN8yLyBEsKmLalfpQznrCUhjw3wVlnvPmgmZ9zJnkSiiLzmCl4xkQamTTxs4yyQhgTGErPO5OlB-bLwXFp_lCMLvya5KJzdPQ9X3LGW4vL-WUo-FvmShnYr15_ufw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ECGA-BP%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E5%A5%BD%E6%B0%A7%E5%A0%86%E8%82%A5%E6%9B%9D%E6%B0%94%E4%BE%9B%E6%B0%A7%E9%87%8F%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E4%B8%81%E5%9B%BD%E8%B6%85&rft.au=%E6%96%BD%E9%9B%AA%E7%8E%B2&rft.au=%E8%83%A1%E5%86%9B&rft.date=2023-04-01&rft.pub=%E9%BB%91%E9%BE%99%E6%B1%9F%E5%85%AB%E4%B8%80%E5%86%9C%E5%9E%A6%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%A4%A7%E5%BA%86+163319%25%E9%BB%91%E9%BE%99%E6%B1%9F%E5%85%AB%E4%B8%80%E5%86%9C%E5%9E%A6%E5%A4%A7%E5%AD%A6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%A4%A7%E5%BA%86+163319&rft.issn=1002-6819&rft.volume=39&rft.issue=7&rft.spage=211&rft.epage=217&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202211088&rft.externalDocID=nygcxb202307022 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |