基于改进YOLOv8n轻量化的人参外观质量精准识别

TP183; 针对人参分级特征微小差异对专业人员依赖性强的问题,同时为了降低人工劳动强度,提高人参外观质量检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8n的轻量级方法.该模型(简称为CGC-YOLOv8模型)首先将YOLOv8n的骨干网络的卷积替换为条件参数化卷积(conditional convolutional networks),这使模型能够根据输入数据的特征进行调整;其次,在颈部网络,引入一种细颈组合(GSconv+VoVGSCSP)降低模型的参数量和模型尺寸的同时,进一步提升模型检测性能;最后,加入坐标注意力机制(coordinate attentio...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 40; no. 24; pp. 274 - 282
Main Authors 张丽娟, 游浩海, 李芝贻, 魏湛郴, 贾浩杰, 于跃, 李东明
Format Journal Article
LanguageChinese
Published 吉林农业大学信息技术学院,长春 130118 01.12.2024
无锡学院物联网工程学院,无锡 214105%吉林农业大学信息技术学院,长春 130118
无锡学院物联网工程学院,无锡 214105%吉林大学仪器科学与电气工程学院,长春 130012%吉林农业大学信息技术学院,长春 130118%无锡学院物联网工程学院,无锡 214105
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202405058

Cover

Abstract TP183; 针对人参分级特征微小差异对专业人员依赖性强的问题,同时为了降低人工劳动强度,提高人参外观质量检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8n的轻量级方法.该模型(简称为CGC-YOLOv8模型)首先将YOLOv8n的骨干网络的卷积替换为条件参数化卷积(conditional convolutional networks),这使模型能够根据输入数据的特征进行调整;其次,在颈部网络,引入一种细颈组合(GSconv+VoVGSCSP)降低模型的参数量和模型尺寸的同时,进一步提升模型检测性能;最后,加入坐标注意力机制(coordinate attention)模块,有效地整合了空间坐标信息到生成的注意力图中,使模型细化特征更加关注人参外观特征,从而提高了特征提取的能力.试验证明,在使用分级良好的人参批次采集的数据集上,该研究的CGC-YOLOv8模型在关键评价指标上,精确度、召回率和平均精度均值(mAP50、mAP50-95),分别达到85.70%、91.23%、94.69%、72.43%,与原模型YOLOv8n相比较分别提升了 2.74、4.64、3.71和4.9个百分点,与原YOLOv8n模型相比有显著提高,而且在模型大小和计算浮点数明显减少.研究结果可为人参等药材外观质量精准识别提供参考.
AbstractList TP183; 针对人参分级特征微小差异对专业人员依赖性强的问题,同时为了降低人工劳动强度,提高人参外观质量检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8n的轻量级方法.该模型(简称为CGC-YOLOv8模型)首先将YOLOv8n的骨干网络的卷积替换为条件参数化卷积(conditional convolutional networks),这使模型能够根据输入数据的特征进行调整;其次,在颈部网络,引入一种细颈组合(GSconv+VoVGSCSP)降低模型的参数量和模型尺寸的同时,进一步提升模型检测性能;最后,加入坐标注意力机制(coordinate attention)模块,有效地整合了空间坐标信息到生成的注意力图中,使模型细化特征更加关注人参外观特征,从而提高了特征提取的能力.试验证明,在使用分级良好的人参批次采集的数据集上,该研究的CGC-YOLOv8模型在关键评价指标上,精确度、召回率和平均精度均值(mAP50、mAP50-95),分别达到85.70%、91.23%、94.69%、72.43%,与原模型YOLOv8n相比较分别提升了 2.74、4.64、3.71和4.9个百分点,与原YOLOv8n模型相比有显著提高,而且在模型大小和计算浮点数明显减少.研究结果可为人参等药材外观质量精准识别提供参考.
Abstract_FL Ginseng has been regarded as the top of conventional Chinese medicine.Its root can be widely used as an herbal medicine with a long history and multiple medicinal values;Thus,it is very crucial to monitor and manage ginseng quality.In this study,a lightweight CGC-YOLOv8 model was introduced into the detection system,in order to classify and assess the appearance quality of ginseng.Ginseng was harvested in Fusong County,Jilin Province,China.An experimental sample was then selected in the current year.Data enhancement techniques were used to simulate the various typical environments.In the basic network design of the model,the regular convolutional layer was replaced with two conditional convolutional layers(CondConv)in the backbone,according to the architecture of the YOLOv8 model.The appearance feature of input ginseng was highlighted to enhance the accuracy and efficiency of feature extraction.In addition,a thin neck combination(GSconv+VoVGSCSP)in the neck structure was applied to lighten the model.The coordinate Attention mechanism(CA)was incorporated to detect the head of the model.The performance was effectively improved without increasing the computational burden,particularly suitable for resource-limited devices.The CGC-YOLOv8 model was then optimized by ablation experiments.The better performance was achieved,with 85.70%precision,a recall of 91.23%,IoU=0.50 mean average precision(mAP50)of 94.69%,and IoU=0.95 mean average precision(mAP50-95)of 72.43%.Furthermore,the CGC-YOLOv8 improved the precision by 2.74 percentage points,recall by 4.64 percentage points,mAP50 by 3.71 percentage points,and mAP50-95 by 4.09 percentage points,respectively,compared with the YOLOv8n.The improved model outperformed the original one when detecting images without training.In addition,the number of parameters was reduced by 6.39%in the CGC-YOLOv8 model,compared with the original.The weight size was only 6.0 MB,fully meeting the lightweight condition and easy to deploy on mobile devices.A series of experiments were conducted to compare the effects of different attention mechanisms(CBAM,EMA,SE,SIMAM,and CA)on the improved YOLOv8n model.The application of the CA mechanism was also explored in the different feature layers(such as before SPPF,after SPPF,upsampling P4 layer,and small object detection layers P3,P4,and P5).The results demonstrated that the CA mechanism performed best when applied to the P5 layer.The recall and mean average precision were significantly enhanced in the improved model.The CGC-YOLOv8 model performed better than the conventional SSD EfficientDet and Yolo series models.Specifically,the precision of CGC-YOLOv8 was 85.20%.Secondly,the recall of CGC-YOLOv8 was 91.23%.The mean average precision(mAP50)was 94.69%.Finally,the mean average precision at the higher thresholds(mAP50-95)of the CGC-YOLOv8 was 72.43%.Therefore,the CGC-YOLOv8 model significantly outperformed the original and the rest,in terms of precision,recall,and mean average precision(mAP).Anyway,the CGC-YOLOv8 model can be expected to serve as a highly effective solution for intelligent detection of ginseng quality.The findings can also provide solid technical support for further advancements in the field.
Author 李芝贻
贾浩杰
张丽娟
魏湛郴
游浩海
李东明
于跃
AuthorAffiliation 无锡学院物联网工程学院,无锡 214105%吉林农业大学信息技术学院,长春 130118;无锡学院物联网工程学院,无锡 214105%吉林大学仪器科学与电气工程学院,长春 130012%吉林农业大学信息技术学院,长春 130118%无锡学院物联网工程学院,无锡 214105;吉林农业大学信息技术学院,长春 130118
AuthorAffiliation_xml – name: 无锡学院物联网工程学院,无锡 214105%吉林农业大学信息技术学院,长春 130118;无锡学院物联网工程学院,无锡 214105%吉林大学仪器科学与电气工程学院,长春 130012%吉林农业大学信息技术学院,长春 130118%无锡学院物联网工程学院,无锡 214105;吉林农业大学信息技术学院,长春 130118
Author_FL YOU Haohai
ZHANG Lijuan
JIA Haojie
LI Dongming
LI Zhiyi
YU Yue
WEI Zhanchen
Author_FL_xml – sequence: 1
  fullname: ZHANG Lijuan
– sequence: 2
  fullname: YOU Haohai
– sequence: 3
  fullname: LI Zhiyi
– sequence: 4
  fullname: WEI Zhanchen
– sequence: 5
  fullname: JIA Haojie
– sequence: 6
  fullname: YU Yue
– sequence: 7
  fullname: LI Dongming
Author_xml – sequence: 1
  fullname: 张丽娟
– sequence: 2
  fullname: 游浩海
– sequence: 3
  fullname: 李芝贻
– sequence: 4
  fullname: 魏湛郴
– sequence: 5
  fullname: 贾浩杰
– sequence: 6
  fullname: 于跃
– sequence: 7
  fullname: 李东明
BookMark eNo9j7tKA0EYhaeIYIx5CgurXf-57k5hIcEbLGyjhVXYye6EBJmAg7c2SGIhSSMptLARFCwEsXFFfZmMWd_CFcXqwFecc74FVDE9kyG0hMHHWAZ8pet3rDU-BiCeCLH0CRAGHHhYQdV_Oo_q1nYUcEwDAIaraNXd5NN89Hn5Unxc78VRfBSa4u31azh2F5PZ1dk0z924724nxV2_eL4v-ezp3Q0HxePAnT8sojmd7Nus_pc1tLuxvtPY8qJ4c7uxFnkWAwFPSYEZZCmhWSaoTgOhmC4_aCo5VSFQzjSBFBKtBAsSLMJUEtYiVAjBsWK0hpZ_e48ToxPTbnZ7hwemXGya03brRP3IlroU6Dcs7WB-
ClassificationCodes TP183
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202405058
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Accurate recognition of ginseng appearance quality based on improved YOLOv8n lightweighting
EndPage 282
ExternalDocumentID nygcxb202424030
GrantInformation_xml – fundername: (国家自然科学基金); (无锡学院引进人才研究创业基金); (无锡学院引进人才研究创业基金); (无锡学院引进人才研究创业基金); (吉林省科技发展计划重点研发项目)
  funderid: (国家自然科学基金); (无锡学院引进人才研究创业基金); (无锡学院引进人才研究创业基金); (无锡学院引进人才研究创业基金); (吉林省科技发展计划重点研发项目)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1020-b96140ed23ee63fd76b4f513f3953b80354f20d0afb647a168d924c2366651b43
ISSN 1002-6819
IngestDate Thu May 29 04:08:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 24
Keywords 人参
注意力机制
ginseng
attention mechanism
外观质量
YOLOv8
目标检测
深度学习
appearance quality
deep learning
target detection
图像识别
image recognition
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1020-b96140ed23ee63fd76b4f513f3953b80354f20d0afb647a168d924c2366651b43
PageCount 9
ParticipantIDs wanfang_journals_nygcxb202424030
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2024
Publisher 吉林农业大学信息技术学院,长春 130118
无锡学院物联网工程学院,无锡 214105%吉林农业大学信息技术学院,长春 130118
无锡学院物联网工程学院,无锡 214105%吉林大学仪器科学与电气工程学院,长春 130012%吉林农业大学信息技术学院,长春 130118%无锡学院物联网工程学院,无锡 214105
Publisher_xml – name: 无锡学院物联网工程学院,无锡 214105%吉林农业大学信息技术学院,长春 130118
– name: 无锡学院物联网工程学院,无锡 214105%吉林大学仪器科学与电气工程学院,长春 130012%吉林农业大学信息技术学院,长春 130118%无锡学院物联网工程学院,无锡 214105
– name: 吉林农业大学信息技术学院,长春 130118
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4523172
Snippet TP183;...
SourceID wanfang
SourceType Aggregation Database
StartPage 274
Title 基于改进YOLOv8n轻量化的人参外观质量精准识别
URI https://d.wanfangdata.com.cn/periodical/nygcxb202424030
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxRBFC6ygOhBXHEnoHWSib3UevDQNdNNEDWXBOIpTG_jaYQsojkGSTyouUgOevAiKHgQxIsj6p_JmPFf-F51ZaaJEZdL8-b1V6_eMtWvunlVRciVEl5ksyLVDdzLq8F4mTVSL88aMsxZ6SudaoHrnW_dFjPz7MYCXxgbf1qrWlpdSaeztQPXlfxPVIEHccVVsv8Q2aFQYAAN8YUrRBiufxVjGnOqE2oiGjO8qpjGgmqgNY0VNQnV5s7szdn7qmt_t6gxNNZUSaoSbKyaVAsaS6qhMXNSUBxHgAqQiJjFKBpJywE5jEaqJkdSE1AT21bAqcCJJYADtKlPgS0TtGza7hR2DRwjacRRFEhWxvbbopFAe1QEt_b-GBbbpJHnWoNNiAUxyQgi7B1lCbipHWFkHaJb1l8K5QNd2WXMCKJRBbRPoD915bkQUPUvJQHbV3ViY-JRZTvVMdXyYIPBrZGs2ckwXJFvDfbRfZXlyrNympYzBIM6oF0A48PSHNsiDHzNr_r4NK1nG0xHQrmc4dJRtXuVG3YBqyeX6jwjN08JqkObfk2BWnKbA7GL6WEX0-gRPLZQjTL_sB6z-7CTPUgRgdszeuNkMpASqx4mI9MyyWh-7eMnhGECCHAbBTF6X-V-iKclDGussMKA23IDp8QhcnlPxWu_V9Cun-uW7W6nNtWbO0aOune0qagacMfJ2NrdE-RI1Fly-9QUJ8n1_qveTu_Z9-efBt9euiE2-PL5x-ZW_8n27otHO71ef2u9_3p78GZ98PEt8Hc_fO1vbgzeb_QfvztF5pN4rjnTcCeRNJZ9_L4CTyyfeUUehEUhwjKXImUlWFuGmoep8kLOysDLvXaZCibbvlC5DlgWhEII7qcsPE0muve6xRkypcJC6SyVOm1LlpZScZ6Xvl-yIk9z4ZdnyZQzftE9aZYX94Xn3J8h58nh0Qi4QCZWllaLizB7XkkvuZj-BKNEkqs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BYOLOv8n%E8%BD%BB%E9%87%8F%E5%8C%96%E7%9A%84%E4%BA%BA%E5%8F%82%E5%A4%96%E8%A7%82%E8%B4%A8%E9%87%8F%E7%B2%BE%E5%87%86%E8%AF%86%E5%88%AB&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E4%B8%BD%E5%A8%9F&rft.au=%E6%B8%B8%E6%B5%A9%E6%B5%B7&rft.au=%E6%9D%8E%E8%8A%9D%E8%B4%BB&rft.au=%E9%AD%8F%E6%B9%9B%E9%83%B4&rft.date=2024-12-01&rft.pub=%E5%90%89%E6%9E%97%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E9%95%BF%E6%98%A5+130118&rft.issn=1002-6819&rft.volume=40&rft.issue=24&rft.spage=274&rft.epage=282&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202405058&rft.externalDocID=nygcxb202424030
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg