基于图像小波域自适应干扰的GAN生成人脸反取证

TP391.4; 针对现有生成对抗网络(GAN)生成人脸反取证方法攻击迁移性不强的问题,提出了一个基于图像小波域自适应干扰的GAN生成人脸反取证方法以提升攻击迁移性.该方法通过对GAN生成人脸图像的小波域信息(即图像经过小波分解后的频率分量)施加扰动以实现其对取证模型的抵抗,并且分别在空域和频域上基于最小可觉察误差(JND)设计自适应扰动阈值,对图像不同像素点位置设置不同的扰动强度,从而增强扰动的人眼不可感知性.此外,还设计了一种数据增强方式对反取证人脸进行数据分布多样性扩充,以进一步提升攻击迁移性.实验结果表明,与6种基线方法相比,所提方法生成的反取证人脸在保证扰动对人眼不可感知前提下具有更...

Full description

Saved in:
Bibliographic Details
Published in东南大学学报(自然科学版) Vol. 54; no. 5; pp. 1330 - 1338
Main Authors 陈北京, 李玉茹, 舒华忠
Format Journal Article
LanguageChinese
Published 南京信息工程大学计算机学院,南京 210044 01.09.2024
南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京 210044%南京信息工程大学计算机学院,南京 210044%东南大学影像科学与技术实验室,南京 210096
Subjects
Online AccessGet full text
ISSN1001-0505
DOI10.3969/j.issn.1001-0505.2024.05.030

Cover

Abstract TP391.4; 针对现有生成对抗网络(GAN)生成人脸反取证方法攻击迁移性不强的问题,提出了一个基于图像小波域自适应干扰的GAN生成人脸反取证方法以提升攻击迁移性.该方法通过对GAN生成人脸图像的小波域信息(即图像经过小波分解后的频率分量)施加扰动以实现其对取证模型的抵抗,并且分别在空域和频域上基于最小可觉察误差(JND)设计自适应扰动阈值,对图像不同像素点位置设置不同的扰动强度,从而增强扰动的人眼不可感知性.此外,还设计了一种数据增强方式对反取证人脸进行数据分布多样性扩充,以进一步提升攻击迁移性.实验结果表明,与6种基线方法相比,所提方法生成的反取证人脸在保证扰动对人眼不可感知前提下具有更强的攻击迁移性.
AbstractList TP391.4; 针对现有生成对抗网络(GAN)生成人脸反取证方法攻击迁移性不强的问题,提出了一个基于图像小波域自适应干扰的GAN生成人脸反取证方法以提升攻击迁移性.该方法通过对GAN生成人脸图像的小波域信息(即图像经过小波分解后的频率分量)施加扰动以实现其对取证模型的抵抗,并且分别在空域和频域上基于最小可觉察误差(JND)设计自适应扰动阈值,对图像不同像素点位置设置不同的扰动强度,从而增强扰动的人眼不可感知性.此外,还设计了一种数据增强方式对反取证人脸进行数据分布多样性扩充,以进一步提升攻击迁移性.实验结果表明,与6种基线方法相比,所提方法生成的反取证人脸在保证扰动对人眼不可感知前提下具有更强的攻击迁移性.
Abstract_FL Aiming at the insufficient attack transferability of existing generative adversarial network(GAN)-generated face anti-forensics methods,a GAN-generated face anti-forensics method based on image wavelet domain adaptive perturbations is proposed to improve the attack transferability.The proposed method resists the forensic models by adding perturbations to the wavelet domain information of GAN-generated facial ima-ges,which are the frequency components after the image wavelet decomposition.Furthermore,adaptive per-turbation thresholds are designed based on just noticeable distortion(JND)in both the spatial and frequency domains,setting different perturbation strengths for different pixel positions in the image,and thereby enhan-cing the imperceptibility of the perturbations to the human eyes.In addition,a data argumentation approach is designed to expand the distribution diversity of the anti-forensics image,thereby further improving the attack transferability.Experimental results show that compared with the six baseline methods,the anti-forensics im-age generated by the proposed method can achieve stronger attack transferability while ensuring the perturba-tion imperceptibility to the human eyes.
Author 李玉茹
舒华忠
陈北京
AuthorAffiliation 南京信息工程大学计算机学院,南京 210044;南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京 210044%南京信息工程大学计算机学院,南京 210044%东南大学影像科学与技术实验室,南京 210096
AuthorAffiliation_xml – name: 南京信息工程大学计算机学院,南京 210044;南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京 210044%南京信息工程大学计算机学院,南京 210044%东南大学影像科学与技术实验室,南京 210096
Author_FL Li Yuru
Shu Huazhong
Chen Beijing
Author_FL_xml – sequence: 1
  fullname: Chen Beijing
– sequence: 2
  fullname: Li Yuru
– sequence: 3
  fullname: Shu Huazhong
Author_xml – sequence: 1
  fullname: 陈北京
– sequence: 2
  fullname: 李玉茹
– sequence: 3
  fullname: 舒华忠
BookMark eNo9jz9Lw0Achm-oYK39FoJT4u_uckluklK0CkUXncsluZMWuYKH2NE_BXXQOBQHHQKOLhZdNIOfppfGb2FEcXrhHd73eZZQTQ-1RGgFg0u5z9cGbt8Y7WIA7AAD5hIgnlslUKih-n-_iJrG9CPAhHAgxK-jdZvls_zWPn7ai9RO0-LtyWZZefn8dXpu84n9eC2up_OHcae1M59kxdXdLM_L8btNb2x6X76cLaMFJQ6NbP5lA-1vbuy1t5zubme73eo6BgMBx-MhCSEMExkFklfMzKNUVhhMREp5AU9UwGisPCIki8Mg5NinAidR7IvEl4I20Orv7onQSuiD3mB4fKSrx16ik9Eo-hGuDCnQb4sbY9s
ClassificationCodes TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-0505.2024.05.030
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL GAN-generated face anti-forensics based on image wavelet domain adaptive perturbation
EndPage 1338
ExternalDocumentID dndxxb202405030
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (62072251)
GroupedDBID 2B.
4A8
92I
93N
ADMLS
ALMA_UNASSIGNED_HOLDINGS
PSX
TCJ
ID FETCH-LOGICAL-s1020-49828088deb7e93965433e1225abff479df753cf42ae5c8789163a1dbc6ad6ea3
ISSN 1001-0505
IngestDate Thu May 29 04:08:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 离散小波变换(DWT)
adversarial perturbations
just noticeable distortion
GAN-generated face
anti-forensics
最小可觉察误差
对抗扰动
GAN生成人脸
反取证
discrete wavelet transform(DWT)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1020-49828088deb7e93965433e1225abff479df753cf42ae5c8789163a1dbc6ad6ea3
PageCount 9
ParticipantIDs wanfang_journals_dndxxb202405030
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 东南大学学报(自然科学版)
PublicationTitle_FL Journal of Southeast University(Natural Science Edition)
PublicationYear 2024
Publisher 南京信息工程大学计算机学院,南京 210044
南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京 210044%南京信息工程大学计算机学院,南京 210044%东南大学影像科学与技术实验室,南京 210096
Publisher_xml – name: 南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京 210044%南京信息工程大学计算机学院,南京 210044%东南大学影像科学与技术实验室,南京 210096
– name: 南京信息工程大学计算机学院,南京 210044
SSID ssib012290226
ssib002258162
ssib036435511
ssib008679709
ssib023167012
ssib000947520
ssib021009659
ssib057620145
ssib000969306
ssib001128997
ssib006563446
ssib002039847
ssib006703054
ssib051368071
ssib004675274
Score 2.4030776
Snippet TP391.4;...
SourceID wanfang
SourceType Aggregation Database
StartPage 1330
Title 基于图像小波域自适应干扰的GAN生成人脸反取证
URI https://d.wanfangdata.com.cn/periodical/dndxxb202405030
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQxcJWHhGgQCBBvpYgrdOHWb1fIe7dHhEgaEildtHu7C9UhkYsUpeIRCSjgKCIKKE6ipCGCBq6g4FuySfgLZnybOwMRL-lkzdmeGc_Mru3x2uMgmC1YAuMQuCWpyooaT6WpGZzIFYqlhSoypgWed15YlPPL_OaKWJmY_OrtWlrvpnPtzSPPlfyPVSEP7IqnZP_BsiOikAEw2BdSsDCkf2VjEgtiWiSyJOaY6tjlRCRygGZEtxCI6g6QJGLE0goLfrEmWhEL6AZ3PGhXBHQMd4AhEUUsbZBCrIgBFvyGXXQwdxSgVBNTrxqALQGaAGvXgBbRzQowEoss5IT-hNghAoWGq9YkRiFgObFDoEms9ABgZ4kVJAapG8h6LIJyfCUCgGtCD0uhCFh5iDVa-0C5zbAEmDcccyfHOCAlsjRNp1mFKRBClg3QzriKdkqglQhDK0QtYuv-mgrlo01jw7fAk7hi6gDAC52gIWoLKSknMaTAJzpKPaDX2GEpBJCgRI2iNUZ1nKRgfNr4le9V6iL6eQOU2wIn6sIfwQT33lThDUchqz565Yd_9VHDJjPSuGETWcyNWMyhalxc20MqPwQmzzrZxkaKdTCmUH0ymKZK4VaJadtcuHXbm8RzJXynxOD1m37QQnT6vUWDOjP-t3sYcXQo_SB0QM5zWsAjYf6ihnSD2LgcQ0p6QQpDvOHAczpQw_6dCRRjQ3hOAIM5u_CC-ImQSe05UeCwU_w277ZVVJo7FsxWar32O6W6g4KdIunc8ea0SyeDE5UzOmOHPcupYGLz7ungetkf7A5elG--lI975U5v7-Pbst8_ePLu24NH5WC7_Pxh79nO_ust6Af2t_t7T1_uDgYHW5_K3vOy9-rg_cMzwXIrXmrM16prVmprIfbS3GiqYbKR5anKDTRacMZyUJNI0qLgymSFEqxdcJrkoq2VBo-SJWGWtmWSyTxhZ4Opzr1Ofi6YyaTOeCJzRdspT0yahgWlWiRZAn5eQs35YKYSeLXqRtdWf3qMLvy5ysXg-PilvRRMde-v55fBNeimV6pn7zsJF8J7
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9B%BE%E5%83%8F%E5%B0%8F%E6%B3%A2%E5%9F%9F%E8%87%AA%E9%80%82%E5%BA%94%E5%B9%B2%E6%89%B0%E7%9A%84GAN%E7%94%9F%E6%88%90%E4%BA%BA%E8%84%B8%E5%8F%8D%E5%8F%96%E8%AF%81&rft.jtitle=%E4%B8%9C%E5%8D%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E9%99%88%E5%8C%97%E4%BA%AC&rft.au=%E6%9D%8E%E7%8E%89%E8%8C%B9&rft.au=%E8%88%92%E5%8D%8E%E5%BF%A0&rft.date=2024-09-01&rft.pub=%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+210044&rft.issn=1001-0505&rft.volume=54&rft.issue=5&rft.spage=1330&rft.epage=1338&rft_id=info:doi/10.3969%2Fj.issn.1001-0505.2024.05.030&rft.externalDocID=dndxxb202405030
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdndxxb%2Fdndxxb.jpg