基于机器视觉的松林天牛远程智能监测系统

S763.38%S24; 松墨天牛和褐梗天牛是松树上两种重要蛀干害虫,及时获取松林天牛的数量变化趋势是松林害虫精准防治的重要前提.为此,该研究构建一款基于机器视觉的松林天牛远程智能监测系统.系统主要由诱捕器模块、天牛检测模块和系统Web端三部分组成.诱捕器模块通常放置于松林重点区域来诱捕天牛害虫,并通过摄像头定时采集天牛图像;天牛检测模型部署于边缘端,以深度学习YOLOv5s模型为基础搭建轻量化检测模型,实现边缘端的天牛实时检测统计;检测结果经无线传输在系统Web端进行呈现,实现天牛数据可追溯.试验结果表明,智能监测系统对天牛监测效果良好,模型的准确率为94.4%,召回率为93.6%,IoU阈...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 39; no. 17; pp. 190 - 198
Main Authors 孙丰刚, 王建丽, 季英超, 陈龙, 常希忠, 王亚琪, 赵吉建, 栾巧巧, 兰鹏
Format Journal Article
LanguageChinese
Published 山东农业大学信息科学与工程学院,泰安 271018%山东农业大学植物保护学院,泰安 271018%新泰市国有土门林场,新泰 271200%新泰市林业保护发展中心,新泰 271200%泰山林业有害生物防治检疫站,泰安 271018 01.09.2023
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202306060

Cover

Abstract S763.38%S24; 松墨天牛和褐梗天牛是松树上两种重要蛀干害虫,及时获取松林天牛的数量变化趋势是松林害虫精准防治的重要前提.为此,该研究构建一款基于机器视觉的松林天牛远程智能监测系统.系统主要由诱捕器模块、天牛检测模块和系统Web端三部分组成.诱捕器模块通常放置于松林重点区域来诱捕天牛害虫,并通过摄像头定时采集天牛图像;天牛检测模型部署于边缘端,以深度学习YOLOv5s模型为基础搭建轻量化检测模型,实现边缘端的天牛实时检测统计;检测结果经无线传输在系统Web端进行呈现,实现天牛数据可追溯.试验结果表明,智能监测系统对天牛监测效果良好,模型的准确率为94.4%,召回率为93.6%,IoU阈值为0.5下的平均精度均值(mAP0.5)为96.2%,单张推理耗时为1.40 s,模型大小为9.3 MB;用户可通过系统Web端查看天牛数量变化趋势.该系统可实现诱捕器场景下的天牛远程智能监测,对提高森林害虫防控智能化水平具有重要意义.
AbstractList S763.38%S24; 松墨天牛和褐梗天牛是松树上两种重要蛀干害虫,及时获取松林天牛的数量变化趋势是松林害虫精准防治的重要前提.为此,该研究构建一款基于机器视觉的松林天牛远程智能监测系统.系统主要由诱捕器模块、天牛检测模块和系统Web端三部分组成.诱捕器模块通常放置于松林重点区域来诱捕天牛害虫,并通过摄像头定时采集天牛图像;天牛检测模型部署于边缘端,以深度学习YOLOv5s模型为基础搭建轻量化检测模型,实现边缘端的天牛实时检测统计;检测结果经无线传输在系统Web端进行呈现,实现天牛数据可追溯.试验结果表明,智能监测系统对天牛监测效果良好,模型的准确率为94.4%,召回率为93.6%,IoU阈值为0.5下的平均精度均值(mAP0.5)为96.2%,单张推理耗时为1.40 s,模型大小为9.3 MB;用户可通过系统Web端查看天牛数量变化趋势.该系统可实现诱捕器场景下的天牛远程智能监测,对提高森林害虫防控智能化水平具有重要意义.
Abstract_FL Monochamus alternatus and Arhopalus rusticus are two important trunk-destroying pests on pine trees.Timely acquisition of their changing trends is required to precisely prevent and control of insect pests in pine forests.In this study,a remote intelligent monitoring system was constructed using machine vision,including the trapping module,the beetle detection,and the system web end.The trapping module was usually placed in the key areas of pine forests to capture the longicorn beetles,and then the images of the beetles were timely collected by cameras.The lightweight detection model(GMW-YOLOv5s)was deployed to recognize and count the longhorn beetles at the edge using the deep learning YOLOv5s model.The detection data was presented on the web end via the wireless transmission for the better traceability of beetles'distribution.The improved YOLOv5s model was used in the detection module to detect the different categories of longhorn beetles.The specific procedures were as follows.Firstly,the Ghost module was selected as the YOLOv5s backbone network to reduce the number of model parameters,and then a lightweight network was constructed.Secondly,the multi-scale detection mechanism was introduced into the neck network for the dependency relationship between the deep semantics and the shallow semantics multi-scale detection information.The feature layer weights of the shallow network were benefited to increase the detection capability of the tiny targets.Finally,the regression loss function of WIoU(wise intersection over union)bounding box was introduced to optimize the target for the high localization accuracy of longhorn beetles.The experimental results show that the better performance was achieved in the intelligent monitoring system.Ghost module was introduced into the detection module to reduce the model size by 6.9 MB and the parameter number by 47.6%.The multi-scale detection was improved the precision and recall by 0.7%and 0.4%,respectively.The mAP0.5 increased to 96.4%with the introduction of WIoU loss function.The GMW-YOLOv5s model was integrated with three improvement methods to detect the longhorn beetles.The precision and recall rate of the improved model were 94.4%and 93.6%,respectively.The mean average precision reached 96.2%under IoU=0.5(mAP0.5),which was higher than that of the original.The improved model shared the better image feature learning and object detection,indicating the superior performance in the detection of small objects.The comparison was also implemented with many mainstream target detection models,including Faster-RCNN,SSD,YOLOX,YOLOv7-tiny,YOLOv5n,and YOLOv5s.The indicators of GMW-YOLOv5s model were improved,such as the precision,recall and mAP0.5.An accurate detection was achieved in the position of longhorn beetles,especially in the densely distributed scenes.In addition,the improved model was used to effectively distinguish some targets,and then avoid missed the detections.A single inference time of 1.40 s and a model size of 9.3 MB were suitable for the deployment on the edge devices with limited computational resources,which was fully met the accuracy and intelligence requirements of the longicorn beetle detection task.Furthermore,the mean average precision and recall were 99.0%,and 98.7%in the two types of longicorn beetles counting respectively.The model and manual counts were relatively close to each other.There was the low number of omissions and misdetections,indicating the less error in counting the longicorn beetles of the image.The monitoring system can be expected to regularly and automatically collect the beetle images on a regular basis,and then accurately detect and count them at the edge end.The trend of the number of longhorn beetles can also be viewed through the system web interface.Therefore,it is of great significance for the remote intelligent monitoring of longhorn beetles in the trap scenarios,particularly for the higher intelligent level of forest pest control.
Author 季英超
王亚琪
常希忠
孙丰刚
王建丽
陈龙
兰鹏
赵吉建
栾巧巧
AuthorAffiliation 山东农业大学信息科学与工程学院,泰安 271018%山东农业大学植物保护学院,泰安 271018%新泰市国有土门林场,新泰 271200%新泰市林业保护发展中心,新泰 271200%泰山林业有害生物防治检疫站,泰安 271018
AuthorAffiliation_xml – name: 山东农业大学信息科学与工程学院,泰安 271018%山东农业大学植物保护学院,泰安 271018%新泰市国有土门林场,新泰 271200%新泰市林业保护发展中心,新泰 271200%泰山林业有害生物防治检疫站,泰安 271018
Author_FL LUAN Qiaoqiao
SUN Fenggang
CHEN Long
CHANG Xizhong
WANG Yaqi
LAN Peng
WANG Jianli
ZHAO Jijian
JI Yingchao
Author_FL_xml – sequence: 1
  fullname: SUN Fenggang
– sequence: 2
  fullname: WANG Jianli
– sequence: 3
  fullname: JI Yingchao
– sequence: 4
  fullname: CHEN Long
– sequence: 5
  fullname: CHANG Xizhong
– sequence: 6
  fullname: WANG Yaqi
– sequence: 7
  fullname: ZHAO Jijian
– sequence: 8
  fullname: LUAN Qiaoqiao
– sequence: 9
  fullname: LAN Peng
Author_xml – sequence: 1
  fullname: 孙丰刚
– sequence: 2
  fullname: 王建丽
– sequence: 3
  fullname: 季英超
– sequence: 4
  fullname: 陈龙
– sequence: 5
  fullname: 常希忠
– sequence: 6
  fullname: 王亚琪
– sequence: 7
  fullname: 赵吉建
– sequence: 8
  fullname: 栾巧巧
– sequence: 9
  fullname: 兰鹏
BookMark eNo9jz1LA0EYhLeIYIz5FRZWd767793ubSnBLwjYaB3ua0OCbMBF1FoRQkCwkphoGiGxFpsL6p_xbu9neKLIFAPDMA-zRmp6oFNCNii4lErhb_XdnjHapQDM4QGVLgOGwCvVSP0_XSVNY3oR-BQFgEfrROaz7Cu7LaZZPl6U85tyPrQP18XjR_F0nz-_2OGk_JzaxagYZ-XVu53cFW8j-7q0y9k6WVHhiUmbf94gx7s7R619p324d9DabjuGAgMHRRrEgULfoz7lQYwYcQZIE6kkC7iXeEkqJPqoEoiFUilniYQQedWLAhFig2z-7p6HWoW62-kPzk51Rezoy258Ef0cpaJC4TfLfGD6
ClassificationCodes S763.38%S24
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202306060
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Remote intelligent monitoring system for pine forest longicorn beetles based on machine vision
EndPage 198
ExternalDocumentID nygcxb202317020
GrantInformation_xml – fundername: (山东省科技型中小企业创新能力提升工程项目); (山东省农业科技基金; (山东省重点研发计划); (山东省自然科学基金)
  funderid: (山东省科技型中小企业创新能力提升工程项目); (林业科技创新)项目); (山东省重点研发计划); (山东省自然科学基金)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1020-37e8c8f35415168c33b62031d9f92864d4de79353fd0c7ffe62d90a363b6b87a3
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 17
Keywords YOLOv5
automatic counting
edge computing
monitoring
intelligent
智能
machine vision
机器视觉
监测
边缘计算
longicorn beetles
自动计数
天牛
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1020-37e8c8f35415168c33b62031d9f92864d4de79353fd0c7ffe62d90a363b6b87a3
PageCount 9
ParticipantIDs wanfang_journals_nygcxb202317020
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2023
Publisher 山东农业大学信息科学与工程学院,泰安 271018%山东农业大学植物保护学院,泰安 271018%新泰市国有土门林场,新泰 271200%新泰市林业保护发展中心,新泰 271200%泰山林业有害生物防治检疫站,泰安 271018
Publisher_xml – name: 山东农业大学信息科学与工程学院,泰安 271018%山东农业大学植物保护学院,泰安 271018%新泰市国有土门林场,新泰 271200%新泰市林业保护发展中心,新泰 271200%泰山林业有害生物防治检疫站,泰安 271018
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4081864
Snippet S763.38%S24;...
SourceID wanfang
SourceType Aggregation Database
StartPage 190
Title 基于机器视觉的松林天牛远程智能监测系统
URI https://d.wanfangdata.com.cn/periodical/nygcxb202317020
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9RAGA-1BdGD-MQ3BZ2TbN3MJPM4TrpZiqCnFnorTTappxX6AO1VEUpB8CS11V6E1qviZYv6z9jd_TP8vi-z2fRh1V6G2ZlfvvdkvxkmM553PxQ8z5NWUgvSel4LciNqOuSqxmWCx1eKLKU13cdP5NRM8Gg2nB0Z-1LZtbSynEykq8d-V3Iar0Ib-BW_kv0Pz5ZEoQHq4F8owcNQ_pOPWRwy02SRZXGApY5ZLJmZpBboMsxqFmtmFdNyUDEsVswAOCBwg0XFUzEzCp-yAbOEAaSJ8KmoiTShBajpiMCGWMBPwaIGEYyY8bErCgmjWARdRQW6DuweRC6a5ESxNQoDLRHQDytcQJIGsxJpagtdg9BwPSBC8XRUJ3pIZghRaIuCCrB3BgJs4xAVK0gLgPikKfCqMDLIBShDBYxUXLE0WCLhotwDVgQ18fKJUKHV5PF6on1VRb0A7WvJdtpntkkmUGTNKkaTd08wEwlrOYwZcoNwhrFgB_OAKzwzjfHwtFJKbNENFxfWOLkhfJx_glOIAlwl9VVAqCin6I0otEgyDNoQKxDtSJ20rwZtEfMFv4M0kR_Hq8hP5lfSKm1wnH666fwC9jOhA4PS2NLEwfB3CYaMCy8cZVzRGCwGeBxeAaleGh9sANFKckMZ0aCEWNZ1AkOdRh6U4IgTvFBJSTBnkdolFi5nKQ4AG7ybVSUD8Yvbd10y6xdXvB_Nk4wKKVFCFhMliwlOSxJ1WR-mh-Wm3faLhfR5gghfwSTzjDfGlcKtMWM2akTN4STMx3WmMkvgeNaGHC5qhL7AKzXKjXi4DSWkPSlOiLPevYGID_8sIH1k2c7n2wuV-cD0Re-Cm8iP2-KtfMkbWX162TtvFxbdYUbZFc_sb3d-dd50tzr7G7v9ndf9nbXe-1fdDz-6H9_tf_rcW9vs_9zq7a53Nzr9l997m2-739Z7X_d6e9tXvZlmPD05VXNX1dSWfFyAEyrTqc5FCPMhX-pUiERyyJdaJjdcy6AVtDLIhEKRt-qpyvNM8papzwsJuESreXHNG20_a2fXvXHh8yRNZCbr6XygeII_dJAKk7SyDHKkG964U3zO_RUtzR1yzc2_Q25554Zvytve6PLiSnYHplfLyV3nz9_hNAHQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%9C%BA%E5%99%A8%E8%A7%86%E8%A7%89%E7%9A%84%E6%9D%BE%E6%9E%97%E5%A4%A9%E7%89%9B%E8%BF%9C%E7%A8%8B%E6%99%BA%E8%83%BD%E7%9B%91%E6%B5%8B%E7%B3%BB%E7%BB%9F&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%99%E4%B8%B0%E5%88%9A&rft.au=%E7%8E%8B%E5%BB%BA%E4%B8%BD&rft.au=%E5%AD%A3%E8%8B%B1%E8%B6%85&rft.au=%E9%99%88%E9%BE%99&rft.date=2023-09-01&rft.pub=%E5%B1%B1%E4%B8%9C%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B3%B0%E5%AE%89+271018%25%E5%B1%B1%E4%B8%9C%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E6%A4%8D%E7%89%A9%E4%BF%9D%E6%8A%A4%E5%AD%A6%E9%99%A2%2C%E6%B3%B0%E5%AE%89+271018%25%E6%96%B0%E6%B3%B0%E5%B8%82%E5%9B%BD%E6%9C%89%E5%9C%9F%E9%97%A8%E6%9E%97%E5%9C%BA%2C%E6%96%B0%E6%B3%B0+271200%25%E6%96%B0%E6%B3%B0%E5%B8%82%E6%9E%97%E4%B8%9A%E4%BF%9D%E6%8A%A4%E5%8F%91%E5%B1%95%E4%B8%AD%E5%BF%83%2C%E6%96%B0%E6%B3%B0+271200%25%E6%B3%B0%E5%B1%B1%E6%9E%97%E4%B8%9A%E6%9C%89%E5%AE%B3%E7%94%9F%E7%89%A9%E9%98%B2%E6%B2%BB%E6%A3%80%E7%96%AB%E7%AB%99%2C%E6%B3%B0%E5%AE%89+271018&rft.issn=1002-6819&rft.volume=39&rft.issue=17&rft.spage=190&rft.epage=198&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202306060&rft.externalDocID=nygcxb202317020
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg