融合上下文的残差门卷积实体抽取
基于传统卷积框架的实体抽取方法,由于受到卷积感受野大小的控制,当前词与上下文的关联程度有限,对实体词在整个句子中的语义欠考虑,识别效果不佳.针对这一问题,提出一种基于残差门卷积的实体识别方法,利用膨胀卷积和带残差的门控线性单元,从多个时序维度同步考虑词间的语义关联,借助门控单元调整流向下一层神经元的信息量,缓解跨层传播的梯度消失问题,同时结合注意力机制捕捉词间的相关语义.在公开命名实体识别数据集和专业领域数据集上运行结果表明,与传统的实体抽取框架相比,基于残差门卷积命名实体算法的速度和精度都有较强的竞争优势,体现出算法的优越性和强鲁棒性....
Saved in:
Published in | 北京大学学报(自然科学版) Vol. 58; no. 1; pp. 69 - 76 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
国防科技大学电子科学学院, 长沙 410073
20.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0479-8023 |
DOI | 10.13209/j.0479-8023.2021.102 |
Cover
Abstract | 基于传统卷积框架的实体抽取方法,由于受到卷积感受野大小的控制,当前词与上下文的关联程度有限,对实体词在整个句子中的语义欠考虑,识别效果不佳.针对这一问题,提出一种基于残差门卷积的实体识别方法,利用膨胀卷积和带残差的门控线性单元,从多个时序维度同步考虑词间的语义关联,借助门控单元调整流向下一层神经元的信息量,缓解跨层传播的梯度消失问题,同时结合注意力机制捕捉词间的相关语义.在公开命名实体识别数据集和专业领域数据集上运行结果表明,与传统的实体抽取框架相比,基于残差门卷积命名实体算法的速度和精度都有较强的竞争优势,体现出算法的优越性和强鲁棒性. |
---|---|
AbstractList | 基于传统卷积框架的实体抽取方法,由于受到卷积感受野大小的控制,当前词与上下文的关联程度有限,对实体词在整个句子中的语义欠考虑,识别效果不佳.针对这一问题,提出一种基于残差门卷积的实体识别方法,利用膨胀卷积和带残差的门控线性单元,从多个时序维度同步考虑词间的语义关联,借助门控单元调整流向下一层神经元的信息量,缓解跨层传播的梯度消失问题,同时结合注意力机制捕捉词间的相关语义.在公开命名实体识别数据集和专业领域数据集上运行结果表明,与传统的实体抽取框架相比,基于残差门卷积命名实体算法的速度和精度都有较强的竞争优势,体现出算法的优越性和强鲁棒性. |
Author | 苏丰龙 景宁 孙承哲 |
AuthorAffiliation | 国防科技大学电子科学学院, 长沙 410073 |
AuthorAffiliation_xml | – name: 国防科技大学电子科学学院, 长沙 410073 |
Author_FL | JING Ning SU Fenglong SUN Chengzhe |
Author_FL_xml | – sequence: 1 fullname: SU Fenglong – sequence: 2 fullname: SUN Chengzhe – sequence: 3 fullname: JING Ning |
Author_xml | – sequence: 1 fullname: 苏丰龙 – sequence: 2 fullname: 孙承哲 – sequence: 3 fullname: 景宁 |
BookMark | eNrjYmDJy89LZWCQNTTQMzQ2MrDUz9IzMDG31LUwMDLWMzIwMtQzNDBiYeCEC3Iw8BYXZyYZGBoZWViamRhyMui-mNf7dELHkx1dT3Z0P5vW_nxWy7N13U-3r3s5fcXT3u3Pl69_um7ek72Tn3Xtfdo_jYeBNS0xpziVF0pzM4S6uYY4e-j6-Lt7Ojv66BYDLTTQNTa2TDFKSjJJsTBOTjUxMEmzNE01TjEwTDJKSzE1SUo0M0oysDQwMbYwskwyMzM2NjayMDRITjYGMoEKgRLcDOoQc8sT89IS89Ljs_JLi_KANsYnZaVUVCQB_WZkYAiExgDaOlUB |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13209/j.0479-8023.2021.102 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitle_FL | A Context-Fusion Method for Entity Extraction Based on Residual Gated Convolution Neural Network |
EndPage | 76 |
ExternalDocumentID | bjdxxb202201010 |
GroupedDBID | -01 23M 2B. 4A8 5GY 8FE 8FH 92E 92I 93N AAABJ AAQEF ABJNI ABLSY ABPYQ ABUWG ABVRV ACECN ACGFS ACPRK ACTRF ADCJG ADGMY ADMLS ADMQQ ADRFT ADZSZ AENOO AEXCR AFKRA AFSCH AFTSM AFZMG AHIBC AIVZI AJZVN ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVBZV CCEZO CCPQU CCVFK CW9 HCIFZ LK8 M7P P2P PDI PHGZM PHGZT PMFND PQQKQ PSX TCJ TGP U1G U5K UY8 |
ID | FETCH-LOGICAL-s1020-339d2bb4d83ce404f95e3d01b2fd54ba62b09043829b663332810cc36335e3043 |
ISSN | 0479-8023 |
IngestDate | Thu May 29 04:00:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | 实体抽取;残差门卷积;梯度消失;注意力机制 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1020-339d2bb4d83ce404f95e3d01b2fd54ba62b09043829b663332810cc36335e3043 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_bjdxxb202201010 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-20 |
PublicationDateYYYYMMDD | 2022-01-20 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | 北京大学学报(自然科学版) |
PublicationTitle_FL | Acta Scientiarum Naturalium Universitatis Pekinensis |
PublicationYear | 2022 |
Publisher | 国防科技大学电子科学学院, 长沙 410073 |
Publisher_xml | – name: 国防科技大学电子科学学院, 长沙 410073 |
SSID | ssib012289641 ssib051370299 ssj0030172 ssib001522812 ssib002258124 ssib000862120 ssib030194702 ssib008143590 ssib002040163 ssib006703675 ssib038076459 |
Score | 2.3155591 |
Snippet | ... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 69 |
Title | 融合上下文的残差门卷积实体抽取 |
URI | https://d.wanfangdata.com.cn/periodical/bjdxxb202201010 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxMNT24kWsH_jNOxhQZOtuvjY5bl73UQSLSAu9lf16Sg9PsK2UngWlpSgIFTz0qqd6bC_9N32t_gtnsvt2t_aBH_BY5iWTycxkk8xkkwkh95NEh4nCrTgJBwclCTJPFybwci4D3c8Sofp4UPjpvJpbFE-W5NLEhTetXUvra-lMtjn2XMn_tCqkQbviKdl_aNmaKCQADO0LT2hheP5VG9NYUxNTPUtjSY1PtaaxoFZTHY0AS2NFjaLg88chNRHVAlOi2GVJakOEY0MNABpTgJp1yBH8epgCCFALEpylhmNxoG9dpbpHy6tiRwauS-wiNcSPaNR1FARSQ2CWRqoFOFKRpHGP2q7jXyOrUYQMAKtWVZyYoFUKsoxDLkvVaxmutEWmSumtj5JZYL-F4qgY4-qGTCchSGVZg6Iwv5a9vOxltDTCcI-Jx_z6ZXblrdMHaBEqZS2WnXzaH6cDQAAm5Yghf5ygNWAcRww7hPsjHeMKKzPmkcBNKLw1povQeBhzrz0BSX2uo5WzSXmJTWWXlNfknJvxOHMRY1dmatIzoIoAQ3I0U3y98TJdyTc2UtQVxhb0L5ApFoa4vWHKxvPPnp9xdAPWNqwZOxOoDsb-QLUNQYmWYjOSY1y3lmGq0SxvvscGQM2oxhCHWcaIsAlEh7cgtKMcyYBDLjrOpY3FceUCbayRzNXZPFTG43GqcEfyBv1k8KJlPS5cJpcqt68TlX14mkxsvrxCpquJdbXzoIr-_vAq8X7s7Qw_vj8-3Do-3D7ZfXf65e3J_vbwYP_n52_DnYPTr9-H-3vHR59Oto6GH3avkcVevNCd86o7TbzVAFdqODc5S1ORa54Vwhd9Iwue-0HK-rkUaaJY6hv3dd6k4AxwDmr3s4wDCIiQcZ1MDl4NihukAyowoh-oAlwykae-NtIU4F9lwmQZGOo3SaeSebkas1aXf2v_W39GuU0uNl3rDplce71e3AU7fC29V700vwAjkJjP |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E4%B8%8A%E4%B8%8B%E6%96%87%E7%9A%84%E6%AE%8B%E5%B7%AE%E9%97%A8%E5%8D%B7%E7%A7%AF%E5%AE%9E%E4%BD%93%E6%8A%BD%E5%8F%96&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E8%8B%8F%E4%B8%B0%E9%BE%99&rft.au=%E5%AD%99%E6%89%BF%E5%93%B2&rft.au=%E6%99%AF%E5%AE%81&rft.date=2022-01-20&rft.pub=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C+%E9%95%BF%E6%B2%99+410073&rft.issn=0479-8023&rft.volume=58&rft.issue=1&rft.spage=69&rft.epage=76&rft_id=info:doi/10.13209%2Fj.0479-8023.2021.102&rft.externalDocID=bjdxxb202201010 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjdxxb%2Fbjdxxb.jpg |