基于小波和深度学习的配电网单相接地故障辨识

TM933; 随着配电网规模的不断扩大,发生单相接地故障后产生的危害也愈加严重,为避免故障进一步升级,必须迅速采取措施切除故障.配电网故障辨识有利于快速查明故障原因,进而采取相应措施切除故障.同时,故障辨识也是故障选线的前提.针对上述情况,文中介绍了一种利用小波分析提取故障特征量并用深度神经网络进行故障辨识的方法.结果 表明,该方法可对小电流接地系统各类单相接地故障进行辨识且辨识准确率高,而且辨识精度受噪声污染影响比传统人工神经网络小....

Full description

Saved in:
Bibliographic Details
Published in电测与仪表 Vol. 58; no. 4; pp. 115 - 120
Main Authors 李晓波, 陈义刚, 陈文斌, 高帅, 包从波
Format Journal Article
LanguageChinese
Published 中国矿业大学电气与动力工程学院,江苏徐州221008 15.04.2021
Subjects
Online AccessGet full text
ISSN1001-1390
DOI10.19753/j.issn1001-1390.2021.04.017

Cover

Abstract TM933; 随着配电网规模的不断扩大,发生单相接地故障后产生的危害也愈加严重,为避免故障进一步升级,必须迅速采取措施切除故障.配电网故障辨识有利于快速查明故障原因,进而采取相应措施切除故障.同时,故障辨识也是故障选线的前提.针对上述情况,文中介绍了一种利用小波分析提取故障特征量并用深度神经网络进行故障辨识的方法.结果 表明,该方法可对小电流接地系统各类单相接地故障进行辨识且辨识准确率高,而且辨识精度受噪声污染影响比传统人工神经网络小.
AbstractList TM933; 随着配电网规模的不断扩大,发生单相接地故障后产生的危害也愈加严重,为避免故障进一步升级,必须迅速采取措施切除故障.配电网故障辨识有利于快速查明故障原因,进而采取相应措施切除故障.同时,故障辨识也是故障选线的前提.针对上述情况,文中介绍了一种利用小波分析提取故障特征量并用深度神经网络进行故障辨识的方法.结果 表明,该方法可对小电流接地系统各类单相接地故障进行辨识且辨识准确率高,而且辨识精度受噪声污染影响比传统人工神经网络小.
Author 包从波
陈义刚
李晓波
陈文斌
高帅
AuthorAffiliation 中国矿业大学电气与动力工程学院,江苏徐州221008
AuthorAffiliation_xml – name: 中国矿业大学电气与动力工程学院,江苏徐州221008
Author_FL Chen Wenbin
Bao Congbo
Gao Shuai
Li Xiaobo
Chen Yigang
Author_FL_xml – sequence: 1
  fullname: Li Xiaobo
– sequence: 2
  fullname: Chen Yigang
– sequence: 3
  fullname: Chen Wenbin
– sequence: 4
  fullname: Gao Shuai
– sequence: 5
  fullname: Bao Congbo
Author_xml – sequence: 1
  fullname: 李晓波
– sequence: 2
  fullname: 陈义刚
– sequence: 3
  fullname: 陈文斌
– sequence: 4
  fullname: 高帅
– sequence: 5
  fullname: 包从波
BookMark eNo9j09LAlEUxd_CIDO_RbSb6d65b3y9VYT0D4Q2tZY34zOUGKFHhPtslUahGxOKIGkTGRGVUJ_GN6Pfoomi1eGcxfmds8AyUSPSjC0huCiFTyt1t2ZMhADoIElwPfDQBe4CigzL_ufzLG9MLQAfSfACeFm2Zm_Gk3HHji7ilzt7dR6_Pdvx0D4OJx-3Sf901mon3dfk89K2e8n1e9y5t4NR3GvN-oPp18P06WyRzVXVodH5P82x_c2NveK2U9rd2imulxyD6QZHSvJkAKg5KF4VRAirOpRAPlBFCE1Se0SgwC-kVoYodQWVEEqQLwqcU44t__aeqKiqooNyvXF8FKXEciVsNoOfv8BTEn0DHbJj2w
ClassificationCodes TM933
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19753/j.issn1001-1390.2021.04.017
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Identification of single-phase grounding fault in distribution network based on wavelet and deep learning
EndPage 120
ExternalDocumentID dcyyb202104017
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1017-99329b01e40a4f733108ec903503d77e39e2330a056d779c19ed1a77a73576443
ISSN 1001-1390
IngestDate Thu May 29 03:55:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 单相接地
故障辨识
中压配电网
深度神经网络
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1017-99329b01e40a4f733108ec903503d77e39e2330a056d779c19ed1a77a73576443
PageCount 6
ParticipantIDs wanfang_journals_dcyyb202104017
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationTitle 电测与仪表
PublicationTitle_FL Electrical Measurement & Instrumentation
PublicationYear 2021
Publisher 中国矿业大学电气与动力工程学院,江苏徐州221008
Publisher_xml – name: 中国矿业大学电气与动力工程学院,江苏徐州221008
SSID ssib051374602
ssj0039791
ssib001129792
Score 2.2928753
Snippet TM933;...
SourceID wanfang
SourceType Aggregation Database
StartPage 115
Title 基于小波和深度学习的配电网单相接地故障辨识
URI https://d.wanfangdata.com.cn/periodical/dcyyb202104017
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcNUWCcEB8RRveugeU7z22rt7QuvEUcWBUyv1VtmODeIQJNoe2jPlRItA9FIqgZCouCCKEAIiwdfUSfsXzEycxEDF67KajMfzXHvGXs-GsSmnFaiW66lapj2vJv0srukkgZuhTGHG5IEJWrTb561gZk7enPfnx8Y7la-WlpeS6XT10L6S_4kq4CCu2CX7D5EdMgUEwBBfGCHCMP5VjHnkc9PkoeWRxFFHiAkdrps8CnjocesSjct1nTCKh4JoLLcBArZBAJxuuHV4pLgBPpJHhmuf6wZh4KiPQNjghk4HvCGMCXmokTOItj7JqqMCgAEC4AB8gCEgI81DoNEI2CYvd6a-OzBkKCXAUYekkiaLAAi5tXSiAA6DOUJCGkQCAMjxhkaPSAwe0bq0UBvSXoNOh5AAFzBEDYB6lcSG3GjyHCjlV9-VuAKXffrdojS7S9XBs-iOEL2G5kGcmuUh8Ai6XnKrKjGousBBeOQC0NmS7wgAnqiIIo8rxOuwwofsgcC7_ZALFB0RDU4LH8NgnJKDiVwXN16q5Cb8-g0KdqeavHxduUhlJROJ0u5-USOo4_DXfIlt1ZQwUcJQwDT6jnYA7vfV_rQjeStdWUmQBBKAUOPsiKtU_xOJ8nUGleJQSKrRir0vPCUDZ7i1Gy4n08uQgcyjbGqg0PXfqEO9de08bt-ulIGzJ9mJ8vlt0vYvxlNsbPXOaXa8sqvnGXajeNHZ62wUu4-7H14VTx91P70vOjvF2529Ly97Ww8O1tZ7zz72vj4p1jd7zz93N14X27vdzbWDre39b2_23z08y-aa0Wx9plb-T0ltERNaDUp81ySOyKQTyxz_BNXRWWpwzd5rKZV5JnM9z4nhWQN-mlSYrCVipWLlwdO-lN45NtG-187Os0nXTQOtPZkHQS7zWMR5lmiTaqNikUulL7BrpfkL5X1oceHHcFz8I8Uldmx0bVxmE0v3l7MrUFkvJVcphN8BuBaXmQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%B0%8F%E6%B3%A2%E5%92%8C%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E9%85%8D%E7%94%B5%E7%BD%91%E5%8D%95%E7%9B%B8%E6%8E%A5%E5%9C%B0%E6%95%85%E9%9A%9C%E8%BE%A8%E8%AF%86&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E6%9D%8E%E6%99%93%E6%B3%A2&rft.au=%E9%99%88%E4%B9%89%E5%88%9A&rft.au=%E9%99%88%E6%96%87%E6%96%8C&rft.au=%E9%AB%98%E5%B8%85&rft.date=2021-04-15&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%B8%8E%E5%8A%A8%E5%8A%9B%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E5%BE%90%E5%B7%9E221008&rft.issn=1001-1390&rft.volume=58&rft.issue=4&rft.spage=115&rft.epage=120&rft_id=info:doi/10.19753%2Fj.issn1001-1390.2021.04.017&rft.externalDocID=dcyyb202104017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg