基于深度学习LDAMP网络的量子状态估计
设计出一种基于学习去噪的近似消息传递(Learned denoising-based approximate message passing,LDAMP)的深度学习网络,将其应用于量子状态的估计.该网络将去噪卷积神经网络与基于去噪的近似消息传递算法相结合,利用量子系统输出的测量值作为网络输入,通过设计出的带有去噪卷积神经网络的LDAMP网络重构出原始密度矩阵,从大量的训练样本中提取各种不同类型密度矩阵的结构特征,来实现对量子本征态、叠加态以及混合态的估计.在对4个量子位的量子态估计的具体实例中,分别在无和有测量噪声干扰情况下,对基于LDAMP网络的量子态估计进行了仿真实验性能研究,并与基于压缩...
Saved in:
Published in | 自动化学报 Vol. 49; no. 1; pp. 79 - 90 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Chinese |
Published |
中国科学技术大学自动化系 合肥230027
2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 |
DOI | 10.16383/j.aas.c210156 |
Cover
Loading…
Abstract | 设计出一种基于学习去噪的近似消息传递(Learned denoising-based approximate message passing,LDAMP)的深度学习网络,将其应用于量子状态的估计.该网络将去噪卷积神经网络与基于去噪的近似消息传递算法相结合,利用量子系统输出的测量值作为网络输入,通过设计出的带有去噪卷积神经网络的LDAMP网络重构出原始密度矩阵,从大量的训练样本中提取各种不同类型密度矩阵的结构特征,来实现对量子本征态、叠加态以及混合态的估计.在对4个量子位的量子态估计的具体实例中,分别在无和有测量噪声干扰情况下,对基于LDAMP网络的量子态估计进行了仿真实验性能研究,并与基于压缩感知的交替方向乘子法和三维块匹配近似消息传递等算法进行估计性能对比研究.数值仿真实验结果表明,所设计的LDAMP网络可以在较少的测量的采样率下,同时完成对4种量子态的更高精度估计. |
---|---|
AbstractList | 设计出一种基于学习去噪的近似消息传递(Learned denoising-based approximate message passing,LDAMP)的深度学习网络,将其应用于量子状态的估计.该网络将去噪卷积神经网络与基于去噪的近似消息传递算法相结合,利用量子系统输出的测量值作为网络输入,通过设计出的带有去噪卷积神经网络的LDAMP网络重构出原始密度矩阵,从大量的训练样本中提取各种不同类型密度矩阵的结构特征,来实现对量子本征态、叠加态以及混合态的估计.在对4个量子位的量子态估计的具体实例中,分别在无和有测量噪声干扰情况下,对基于LDAMP网络的量子态估计进行了仿真实验性能研究,并与基于压缩感知的交替方向乘子法和三维块匹配近似消息传递等算法进行估计性能对比研究.数值仿真实验结果表明,所设计的LDAMP网络可以在较少的测量的采样率下,同时完成对4种量子态的更高精度估计. |
Author | 丛爽 林文瑞 |
AuthorAffiliation | 中国科学技术大学自动化系 合肥230027 |
AuthorAffiliation_xml | – name: 中国科学技术大学自动化系 合肥230027 |
Author_FL | CONG Shuang LIN Wen-Rui |
Author_FL_xml | – sequence: 1 fullname: LIN Wen-Rui – sequence: 2 fullname: CONG Shuang |
Author_xml | – sequence: 1 fullname: 林文瑞 – sequence: 2 fullname: 丛爽 |
BookMark | eNrjYmDJy89LZWAQMzTQMzQztjDWz9JLTCzWSzYyNDA0NWNh4DQwMjXRNQGyORh4i4szkwwMDA0NjCwNDTkZjJ7O3_VkV9-z7Ruf7lr2dO2yJzsX-Lg4-gY83zvx-e45z2e1vGzvf7p2wvOubc8aGp_s2fBi3UIeBta0xJziVF4ozc0Q6uYa4uyh6-Pv7uns6KNbDLTXTDfV3NIyKcUw1cDCJNXUItXAKC3FItncyMIw0czU0iDJ3MAgOckMKGiYZJRkYpZiZpwIlDEySk1KNkg2N08xMeZmUIOYW56Yl5aYlx6flV9alAe0Mb4qJaMiycjAyNjA0MDAzBgACYVXSw |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.c210156 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Quantum State Estimation Based on Deep Learning LDAMP Networks |
EndPage | 90 |
ExternalDocumentID | zdhxb202301006 |
GrantInformation_xml | – fundername: (国家自然科学基金); (国家自然科学基金) funderid: (国家自然科学基金); (国家自然科学基金) |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 4.4 457 4A8 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 93N AAIKJ AALRI AAQFI AAXUO ABJNI ABWVN ACGFS ACRPL ADEZE ADNMO ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CS3 CUBFJ CW9 EBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PSX Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S |
ID | FETCH-LOGICAL-s1016-e799bd1e084e58e02fd8c7281a6590b700cb62fd1b2b46d63a1a622ebc0c77d43 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 量子状态估计 近似消息传递法 密度矩阵 压缩感知 深度学习 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1016-e799bd1e084e58e02fd8c7281a6590b700cb62fd1b2b46d63a1a622ebc0c77d43 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_zdhxb202301006 |
PublicationCentury | 2000 |
PublicationDate | 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | 自动化学报 |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2023 |
Publisher | 中国科学技术大学自动化系 合肥230027 |
Publisher_xml | – name: 中国科学技术大学自动化系 合肥230027 |
SSID | ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.3967931 |
Snippet | 设计出一种基于学习去噪的近似消息传递(Learned denoising-based approximate message... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 79 |
Title | 基于深度学习LDAMP网络的量子状态估计 |
URI | https://d.wanfangdata.com.cn/periodical/zdhxb202301006 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Fq1FzggnuJND_iEAnYefhyd3SwVahGHFvVWJXFCT4tEtxLaE0hISBx4XBEScOmtCC4gFvib3S78BGLGSdksIF6XaDIejz0e73jGWY8JOR_5wmbCl57OdeiFPAu8NLCBJ2H1SNMcPKQS9zuWr4rF1fDKWrTWan1t_Gtpq59dzAe_PFfyP1oFHOgVT8n-g2a_MwUEwKBfeIKG4flXOqZJRHWXxoYmIT5VQhNBY0ljjkWAMQIB03EA0Ghq2FLHLF-jCVB1qOYOiKluI6CBR0gTTZWkqltX1QyLlKGxQPaKgffpmLVpDEWKmoQa3vRyEQkcjEEOUNEoB7SpbnZHuKJoT-WI0AnV0gECGWCPOCCnJNCqojp2HVIgQHPTojpR7CZYTQgN4QjFKCnUMI7dDx0AcbC9NjWVvCGSTWl-IwiMWwBDd8G1wbA_SO2DSBBwsSoXQW1jIT72MIZtLghVDtWZiV9Z9-ram9pPqG45_WkFAnsWuCUoTWFqQUC9x3w2q_fAbtzOcGQgHsaM8fO-lBys8vzleOm6mTq04P_phgWONBjZhsMmIkwoOH2X-Fm88R0b3oNgGiDibQGisQEQ8QDCVQzAK98lwlxObleyHpY6zSkKdWlGJHfGrVemvRsNd2zlIDlQx1ELpvpRHCKtwcZhsr-RXfMI8cfPh6Phw913b8bD7fHO9uj9Czf1J5-eTD48mzy99-X-o_HO48mDt7t37o4-vv786uVRstpNVtqLXn1FiLeJ205eIbXOLC-YCotIFcwvrcqlr3gqYKgyyVgOlqi0PPOzUFgRpFDi-0WWs1xKGwbHyFzvZq84ThbAs5UlLGehLcOQlWCoeJZKYbnNNCuZPUHO1RKv1yZgc31Wiyf_SHGK7EO42sI7Teb6t7aKM-DU9rOztea_Aa_8dqc |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0LDAMP%E7%BD%91%E7%BB%9C%E7%9A%84%E9%87%8F%E5%AD%90%E7%8A%B6%E6%80%81%E4%BC%B0%E8%AE%A1&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E6%9E%97%E6%96%87%E7%91%9E&rft.au=%E4%B8%9B%E7%88%BD&rft.date=2023&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6%E8%87%AA%E5%8A%A8%E5%8C%96%E7%B3%BB+%E5%90%88%E8%82%A5230027&rft.issn=0254-4156&rft.volume=49&rft.issue=1&rft.spage=79&rft.epage=90&rft_id=info:doi/10.16383%2Fj.aas.c210156&rft.externalDocID=zdhxb202301006 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |