基于无监督深度模型迁移的滚动轴承寿命预测方法

针对实际中某种工况滚动轴承带标签振动数据获取困难,健康指标难以构建及寿命预测误差大的问题,提出一种基于无监督深度模型迁移的滚动轴承剩余使用寿命(Remaining useful life,RUL)预测方法.该方法首先对滚动轴承全寿命周期振动数据提取均方根(Root mean square,RMS)特征,并引入新的自下而上(Bottom-up,BUP)时间序列分割算法将特征序列分割为正常期、退化期和衰退期3种状态;对振动信号经快速傅里叶(Fast Fourier transform,FFT)变换后的幅值序列进行状态信息标记,并将其输入到新增卷积层的全卷积神经网络(Full convolution...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 49; no. 12; pp. 2627 - 2638
Main Authors 康守强, 邢颖怡, 王玉静, 王庆岩, 谢金宝, MIKULOVICH Vladimir Ivanovich
Format Journal Article
LanguageChinese
Published 哈尔滨理工大学测控技术与通信工程学院 哈尔滨 150000 中国%海南师范大学物理与电子工程学院 海口 571158 中国%白俄罗斯国立大学 明斯克 220030 白俄罗斯 01.12.2023
Subjects
Online AccessGet full text
ISSN0254-4156
DOI10.16383/j.aas.c200890

Cover

Abstract 针对实际中某种工况滚动轴承带标签振动数据获取困难,健康指标难以构建及寿命预测误差大的问题,提出一种基于无监督深度模型迁移的滚动轴承剩余使用寿命(Remaining useful life,RUL)预测方法.该方法首先对滚动轴承全寿命周期振动数据提取均方根(Root mean square,RMS)特征,并引入新的自下而上(Bottom-up,BUP)时间序列分割算法将特征序列分割为正常期、退化期和衰退期3种状态;对振动信号经快速傅里叶(Fast Fourier transform,FFT)变换后的幅值序列进行状态信息标记,并将其输入到新增卷积层的全卷积神经网络(Full convolutional neural network,FCN)中,提取深层特征,得到预训练模型;提出将预训练模型的梯度作为一种"特征"与传统预训练模型特征一起参与目标域网络训练过程,从而得到状态识别模型;利用状态概率估计法结合状态识别模型建立滚动轴承寿命预测模型.实验验证所提方法无需构建健康指标,可实现无监督条件下不同工况滚动轴承剩余寿命预测,并获得较好的效果.
AbstractList 针对实际中某种工况滚动轴承带标签振动数据获取困难,健康指标难以构建及寿命预测误差大的问题,提出一种基于无监督深度模型迁移的滚动轴承剩余使用寿命(Remaining useful life,RUL)预测方法.该方法首先对滚动轴承全寿命周期振动数据提取均方根(Root mean square,RMS)特征,并引入新的自下而上(Bottom-up,BUP)时间序列分割算法将特征序列分割为正常期、退化期和衰退期3种状态;对振动信号经快速傅里叶(Fast Fourier transform,FFT)变换后的幅值序列进行状态信息标记,并将其输入到新增卷积层的全卷积神经网络(Full convolutional neural network,FCN)中,提取深层特征,得到预训练模型;提出将预训练模型的梯度作为一种"特征"与传统预训练模型特征一起参与目标域网络训练过程,从而得到状态识别模型;利用状态概率估计法结合状态识别模型建立滚动轴承寿命预测模型.实验验证所提方法无需构建健康指标,可实现无监督条件下不同工况滚动轴承剩余寿命预测,并获得较好的效果.
Abstract_FL In order to solve the problems such as difficulty in acquiring labeled vibration data of rolling bearings under certain working condition in practice,difficulty in constructing health indicators and large error in life predic-tion of rolling bearings,a method of remaining useful life(RUL)prediction of rolling bearings is proposed based on unsupervised deep model transfer.Firstly,the root mean square(RMS)features of the vibration data of the full life cycle of the rolling bearings are extracted,and a new bottom-up(BUP)time series segmentation algorithm is intro-duced to divide the feature sequence into three states:Normal period,degradation period and recession period.Mark the state information of the amplitude sequence of the vibration signal after the fast Fourier transform(FFT),and input it into the fully convolutional neural network(FCN)of the newly added convolutional layer to extract deep features,and the pre-trained model can be obtained.The gradient of the pre-trained model is proposed and used as a"feature"to participate in the target domain network training process together with the traditional pre-trained model features,and the state identification model is obtained.Using state probability estimation method combined with state identification model,life prediction model of rolling bearing can be established.Experiments verify that,without establishing health indicators,the proposed method can realize remaining useful life prediction of rolling bearings for different working conditions under unsupervised conditions,and achieve better results.
Author 王庆岩
王玉静
邢颖怡
MIKULOVICH Vladimir Ivanovich
康守强
谢金宝
AuthorAffiliation 哈尔滨理工大学测控技术与通信工程学院 哈尔滨 150000 中国%海南师范大学物理与电子工程学院 海口 571158 中国%白俄罗斯国立大学 明斯克 220030 白俄罗斯
AuthorAffiliation_xml – name: 哈尔滨理工大学测控技术与通信工程学院 哈尔滨 150000 中国%海南师范大学物理与电子工程学院 海口 571158 中国%白俄罗斯国立大学 明斯克 220030 白俄罗斯
Author_FL KANG Shou-Qiang
XING Ying-Yi
WANG Yu-Jing
XIE Jin-Bao
MIKULOVICH Vladimir Ivanovich
WANG Qing-Yan
Author_FL_xml – sequence: 1
  fullname: KANG Shou-Qiang
– sequence: 2
  fullname: XING Ying-Yi
– sequence: 3
  fullname: WANG Yu-Jing
– sequence: 4
  fullname: WANG Qing-Yan
– sequence: 5
  fullname: XIE Jin-Bao
– sequence: 6
  fullname: MIKULOVICH Vladimir Ivanovich
Author_xml – sequence: 1
  fullname: 康守强
– sequence: 2
  fullname: 邢颖怡
– sequence: 3
  fullname: 王玉静
– sequence: 4
  fullname: 王庆岩
– sequence: 5
  fullname: 谢金宝
– sequence: 6
  fullname: MIKULOVICH Vladimir Ivanovich
BookMark eNotzT1Lw0AYwPEbKlhrVz-CW-Jzz-Uul1GLb1Bw0blccolaJAWDKG5CFy0IHapQ8R20m4iKmFLyZcylfgsLOv23_2-GlOJWHBIyR8Gmgkm20LSVSuwAAaQHJVIG5I7lUC6mSTVJdn0ASgE9SstkKb9Nv9Nzc3lXXHWL60fz-ZqnT2Zwn990xtlJ8Tws-m0z7Odng_Ho3Zxm-UuWd0c_D23z0TEXX-atN0umIrWXhNX_VsjWyvJmbc2qb6yu1xbrVkKBCosLqQPqhIorVzPlBlwi9xkGKmICOdUggUlfRU4gtQ8eIDJPeNwVIWoHJauQ-b_voYojFW83mq2D_XgiNo71zpGPgIziRGK_jM5kmw
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.c200890
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Rolling Bearing Life Prediction Based on Unsupervised Deep Model Transfer
EndPage 2638
ExternalDocumentID zdhxb202312016
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
4.4
457
4A8
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
93N
AAIKJ
AALRI
AAQFI
AAXUO
ABJNI
ABWVN
ACGFS
ACRPL
ADEZE
ADNMO
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CS3
CUBFJ
CW9
EBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PSX
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1016-568dc14ea5a7d3a7c5825b32caf36251d08038baf4c8db090223969576e2d4283
ISSN 0254-4156
IngestDate Thu May 29 04:10:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords state identification
滚动轴承
model transfer
different working conditions
remaining useful life(RUL)
剩余使用寿命
模型迁移
不同工况
状态识别
Rolling bearing
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1016-568dc14ea5a7d3a7c5825b32caf36251d08038baf4c8db090223969576e2d4283
PageCount 12
ParticipantIDs wanfang_journals_zdhxb202312016
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 自动化学报
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2023
Publisher 哈尔滨理工大学测控技术与通信工程学院 哈尔滨 150000 中国%海南师范大学物理与电子工程学院 海口 571158 中国%白俄罗斯国立大学 明斯克 220030 白俄罗斯
Publisher_xml – name: 哈尔滨理工大学测控技术与通信工程学院 哈尔滨 150000 中国%海南师范大学物理与电子工程学院 海口 571158 中国%白俄罗斯国立大学 明斯克 220030 白俄罗斯
SSID ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.4680862
Snippet 针对实际中某种工况滚动轴承带标签振动数据获取困难,健康指标难以构建及寿命预测误差大的问题,提出一种基于无监督深度模型迁移的滚动轴承剩余使用寿命(Remaining useful life,RUL)预测方法.该方法首先对滚动轴承全寿命周期振动数据提取均方根(Root mean...
SourceID wanfang
SourceType Aggregation Database
StartPage 2627
Title 基于无监督深度模型迁移的滚动轴承寿命预测方法
URI https://d.wanfangdata.com.cn/periodical/zdhxb202312016
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNT2ogfxE7_twTktsbszmczMMbObtYh6aqW3kq-1pxVsC9Kb0IsWhB5UqPgN2puIithS-mfcbP0XvjeZdNNabfUSJjPv-70kb4bJG8e5whXP4iSOXRGxjusxT7gRy1KXQXIiMqk6HbOYc_OWPz7pXZ_iU0MjY5VdS_Nz8dVkYc__Sv7Hq9AHfsW_ZP_Bs9tEoQPa4F-4gofheiAfk5AT1SY6IKGHVxmS0CdKkKBOQkGUJqphGi0SMBzSgugGYgFw4GNPIElgelRIpCahJLoN2SViBQCsDTpQ9gy6xjYAywAREbhFtBmSChFhKGjbBrCG0VCRgJbo3LAACaGtTA8jxeGXZX6MNCWwrnKBRhNRkHjLio1DvAwWqxAohyCgh0HSTTJYhEA5JEVRCoFUQaUOyg9ABBpQ6rKhEBZMp9QeIIajNEJpoKuqqyeU7dqJYszBSrnqRJXWRPXAvvWSEmjOjRIeWr-q8LbtgD8OGROA_GjNJhodI0CaCFBm90oRE23rXUtZIMdCfEsZNESD1P4iYq2Bx1nUa5YFICKsRu9SbmUrbC9bGHxIQBpKEj0n2V4aCbRvoCrqb8svkLnmFhhGDyZ_VQ5Qm9W4gHmI_JPYAhExQI2VMEAF3iphAzRoD-CRry757lDE8FWyfPJKNIneqlHckol2259X5XtMuefiekc1eSjq7ZYvSVpNBfyi6IVNK6lfVDH6LWWBfmZyliiCdxFuRyrOz91VBn4hnbkfYwQ3IGX3DzkjVAjclzJyTd-4HQxmQDBhUJVPNlfwVa5k-D7HCpSDe4H7KCobH-CescGKAh4v4VdWjHiDCc5wxaZIdjkW_zLL2NY2ti4uKjW2QyXzU2S3E3XvVPL3iWPOUTvxHg2Kt-hxZ2hh5oRzpFKO9aSje6_Wfqw9zp-97j9f7r94l3_71Ft7n6--6b1c2tp80P-w3l9ZzNdXeo9Wtza-5A83ex83e8sbP98u5l-X8qff889PTjmT7XCiOe7aM2bcWVy3dLkv06ThZRGPRMoikXBJecxoEnUgteeNFGbUTMZRx0tkGuMmdsqUr8CKGU2xWOVpZ7h7t5udcUajNBHgk8j3sSAXi-KM0yzKaN2LOwll3lnnsrXAtP2GzE7v9Oq5fSHOO4cHb7ELzvDcvfnsIsyK5uJLNhJ-AUKh-B8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%97%A0%E7%9B%91%E7%9D%A3%E6%B7%B1%E5%BA%A6%E6%A8%A1%E5%9E%8B%E8%BF%81%E7%A7%BB%E7%9A%84%E6%BB%9A%E5%8A%A8%E8%BD%B4%E6%89%BF%E5%AF%BF%E5%91%BD%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%BA%B7%E5%AE%88%E5%BC%BA&rft.au=%E9%82%A2%E9%A2%96%E6%80%A1&rft.au=%E7%8E%8B%E7%8E%89%E9%9D%99&rft.au=%E7%8E%8B%E5%BA%86%E5%B2%A9&rft.date=2023-12-01&rft.pub=%E5%93%88%E5%B0%94%E6%BB%A8%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E6%B5%8B%E6%8E%A7%E6%8A%80%E6%9C%AF%E4%B8%8E%E9%80%9A%E4%BF%A1%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E5%93%88%E5%B0%94%E6%BB%A8+150000+%E4%B8%AD%E5%9B%BD%25%E6%B5%B7%E5%8D%97%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6%E7%89%A9%E7%90%86%E4%B8%8E%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E6%B5%B7%E5%8F%A3+571158+%E4%B8%AD%E5%9B%BD%25%E7%99%BD%E4%BF%84%E7%BD%97%E6%96%AF%E5%9B%BD%E7%AB%8B%E5%A4%A7%E5%AD%A6+%E6%98%8E%E6%96%AF%E5%85%8B+220030+%E7%99%BD%E4%BF%84%E7%BD%97%E6%96%AF&rft.issn=0254-4156&rft.volume=49&rft.issue=12&rft.spage=2627&rft.epage=2638&rft_id=info:doi/10.16383%2Fj.aas.c200890&rft.externalDocID=zdhxb202312016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg