基于分布式模型的流域洪水时空特征分析方法
TV122; 为加深对极端暴雨条件下流域洪水形成机理的理解与认识,以"23·7"海河流域大清河特大洪水为例,提出一种基于分布式模型的流域洪水时空特征分析方法.采用时空变源分布式水文模拟方法,分别构建覆盖大清河南、北两支的分布式水文模型,开展分组并行模拟.结果表明:14个站点模拟洪峰误差平均值小于5%,纳什效率系数平均值为0.7,模拟结果较好."23·7"特大洪水大清河北支平均径流系数为0.55,远高于南支流域(0.27),致灾洪量主要来自北支.北支流域在洪水过程中呈现超渗、蓄满混合产流模式,当该区域累计雨量超过107 mm时,流域出现蓄满地表产流,当小时...
Saved in:
Published in | 水科学进展 Vol. 35; no. 5; pp. 726 - 737 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
中国水利水电科学研究院,北京 100038%河海大学水文水资源学院,江苏南京 210098
01.11.2024
江苏省流域地理空问智能工程研究中心,江苏南京 211100%水利部海河水利委员会水文局,天津 300181%江苏省流域地理空问智能工程研究中心,江苏南京 211100 河海大学地理与遥感学院,江苏南京 211100 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-6791 |
DOI | 10.14042/j.cnki.32.1309.2024.05.004 |
Cover
Abstract | TV122; 为加深对极端暴雨条件下流域洪水形成机理的理解与认识,以"23·7"海河流域大清河特大洪水为例,提出一种基于分布式模型的流域洪水时空特征分析方法.采用时空变源分布式水文模拟方法,分别构建覆盖大清河南、北两支的分布式水文模型,开展分组并行模拟.结果表明:14个站点模拟洪峰误差平均值小于5%,纳什效率系数平均值为0.7,模拟结果较好."23·7"特大洪水大清河北支平均径流系数为0.55,远高于南支流域(0.27),致灾洪量主要来自北支.北支流域在洪水过程中呈现超渗、蓄满混合产流模式,当该区域累计雨量超过107 mm时,流域出现蓄满地表产流,当小时雨量超过15.3mm/h时,则可能出现超渗地表产流;对比大清河系南支,北支流域缺少大型控制性水利工程也是导致本次大清河特大洪水灾害发生的另一主要原因. |
---|---|
AbstractList | TV122; 为加深对极端暴雨条件下流域洪水形成机理的理解与认识,以"23·7"海河流域大清河特大洪水为例,提出一种基于分布式模型的流域洪水时空特征分析方法.采用时空变源分布式水文模拟方法,分别构建覆盖大清河南、北两支的分布式水文模型,开展分组并行模拟.结果表明:14个站点模拟洪峰误差平均值小于5%,纳什效率系数平均值为0.7,模拟结果较好."23·7"特大洪水大清河北支平均径流系数为0.55,远高于南支流域(0.27),致灾洪量主要来自北支.北支流域在洪水过程中呈现超渗、蓄满混合产流模式,当该区域累计雨量超过107 mm时,流域出现蓄满地表产流,当小时雨量超过15.3mm/h时,则可能出现超渗地表产流;对比大清河系南支,北支流域缺少大型控制性水利工程也是导致本次大清河特大洪水灾害发生的另一主要原因. |
Abstract_FL | In order to deeply understand the mechanism of basin floods under the extreme rainfall condition,taking the"23·7"catastrophic flood occurred at the Daqinghe River as an example,a distributed modelling-based quantitative analysis approach to assess the spatiotemporal characteristics of basin flood is proposed in this study.The spatiotemporal variable-source hydrological simulation method has been taken to set up a distributed model consisted with 19 computation units covering the south and north branches of the Daqinghe River,and to run in parallel.The average flood peak error of the simulation results at 14 calibrated stations is lower than 5%,and the average Nash coefficient is 0.7.The results show that the averaged runoff coefficient of the north branch of the Daqinghe River is 0.55,which is much higher than that of the south branch by 0.27.The flow amount which causes this flood disaster mainly comes from the north branch.During the"23·7"catastrophic flood process,the north basin exhibits a mixed pattern of Dunne and Horton runoff generation mechanism.When the accumulated rainfall in the basin reaches 107mm,the Horton surface runoff will be appeared in the catchment.When the rainfall intensity exceeds 15.3mm/h,the Dunne surface runoff will be occurred.Meanwhile,compared to the south branch of the Daqinghe River,the lack of large-scale controlling projects in the main branch of north branch is another major reason led to this catastrophic flood disaster.The approach presented in this paper can provide technical references for the construction of flood model integrated in the digital twin system of other basins in China. |
Author | 王莹 张晓祥 魏琳 刘昌军 史朝旭 马强 王浩雯 |
AuthorAffiliation | 中国水利水电科学研究院,北京 100038%河海大学水文水资源学院,江苏南京 210098;江苏省流域地理空问智能工程研究中心,江苏南京 211100%水利部海河水利委员会水文局,天津 300181%江苏省流域地理空问智能工程研究中心,江苏南京 211100;河海大学地理与遥感学院,江苏南京 211100 |
AuthorAffiliation_xml | – name: 中国水利水电科学研究院,北京 100038%河海大学水文水资源学院,江苏南京 210098;江苏省流域地理空问智能工程研究中心,江苏南京 211100%水利部海河水利委员会水文局,天津 300181%江苏省流域地理空问智能工程研究中心,江苏南京 211100;河海大学地理与遥感学院,江苏南京 211100 |
Author_FL | SHI Chaoxu MA Qiang LIU Changjun WEI Lin WANG Haowen ZHANG Xiaoxiang WANG Ying |
Author_FL_xml | – sequence: 1 fullname: MA Qiang – sequence: 2 fullname: WANG Ying – sequence: 3 fullname: WEI Lin – sequence: 4 fullname: SHI Chaoxu – sequence: 5 fullname: WANG Haowen – sequence: 6 fullname: ZHANG Xiaoxiang – sequence: 7 fullname: LIU Changjun |
Author_xml | – sequence: 1 fullname: 马强 – sequence: 2 fullname: 王莹 – sequence: 3 fullname: 魏琳 – sequence: 4 fullname: 史朝旭 – sequence: 5 fullname: 王浩雯 – sequence: 6 fullname: 张晓祥 – sequence: 7 fullname: 刘昌军 |
BookMark | eNotj7tKA0EYhaeIYIx5CsFux39uuztgI8EbBGy0DnuZkWxkAy6i2AVFFCHaqGCRxU6tBKOYRXwaZ_Iajmh1mo9zvjOHank_VwgtEMCEA6dLGU7yXhczigkDiSlQjkFgAF5DdQJAPD-QZBY1i6IbA1AqAklZHS2bsvquhub8zHycmM8r-_hgRpfT-1P7NjBlacfP9mVs796nT9X0YmK-Bo60o2t7O7GvN_NoRkd7hWr-ZwPtrK1utza89tb6Zmul7RUECPfikEkZUZ-HKoilirXwZZjKgAaRhFAlTkSnKgkhBR5zxYj2HaRp6iSpEMAaaPGv9zDKdZTvdrL-wX7uFjtF7yg7_j0Lwl1lPyiIYus |
ClassificationCodes | TV122 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.14042/j.cnki.32.1309.2024.05.004 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
DocumentTitle_FL | A modelling-based assessment approach of basin flood spatiotemporal characteristics |
EndPage | 737 |
ExternalDocumentID | skxjz202405004 |
GroupedDBID | -01 2B. 4A8 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CCVFK CW9 PSX TCJ TGT U1G U5M UY8 |
ID | FETCH-LOGICAL-s1014-b8399a2648e7b9ebf5698d9727a908ec923fdec80d04b4e31f6ebff2d25725503 |
ISSN | 1001-6791 |
IngestDate | Thu May 29 04:03:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 产流模式 时空变源 distributed model 分布式模型 the"23.7"catastrophic flood spatiotemporal variability "23·7"特大洪水 大清河 rainstorm flood Daqinghe River 暴雨洪水 runoff generation mechanism |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1014-b8399a2648e7b9ebf5698d9727a908ec923fdec80d04b4e31f6ebff2d25725503 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_skxjz202405004 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 水科学进展 |
PublicationTitle_FL | Advances in Water Science |
PublicationYear | 2024 |
Publisher | 中国水利水电科学研究院,北京 100038%河海大学水文水资源学院,江苏南京 210098 江苏省流域地理空问智能工程研究中心,江苏南京 211100%水利部海河水利委员会水文局,天津 300181%江苏省流域地理空问智能工程研究中心,江苏南京 211100 河海大学地理与遥感学院,江苏南京 211100 |
Publisher_xml | – name: 河海大学地理与遥感学院,江苏南京 211100 – name: 江苏省流域地理空问智能工程研究中心,江苏南京 211100%水利部海河水利委员会水文局,天津 300181%江苏省流域地理空问智能工程研究中心,江苏南京 211100 – name: 中国水利水电科学研究院,北京 100038%河海大学水文水资源学院,江苏南京 210098 |
SSID | ssib002257923 ssib023167946 ssj0039382 ssib025872836 ssib051373317 ssib000862358 |
Score | 2.4227967 |
Snippet | TV122;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 726 |
Title | 基于分布式模型的流域洪水时空特征分析方法 |
URI | https://d.wanfangdata.com.cn/periodical/skxjz202405004 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1BfUifuK3BZ2TpGYnk8kMeMnsZi2CnlrorWw2SdXCCrYF6a0oogjqRQUPLd7Uk2AVW8S_xqR_heB7L7O7Wa34cRneTua9ee_9svOVmTeOcyGBTtTPte_Krhau4Fnmdrzcc1PA209yJXwK13TtupyeFVfngrmxPd9ru5ZWlpOp7uqu50r-B1XIA1zxlOw_IDsQChlAA76QAsKQ_hXGLA6YbjMTsVhgqmLMUYopiYQBwieiyVSbxZJFikUN4oqZMiwOmQYugY8MMDasQE2FjWBRRISHNBA6ZEYiV6Sp0pApIDRVEVt2W7vEKrRHhKQykPqsuuqyPxquCQeZoAxJiFosAgmKGdDEkPBGnxFeDRZrrD9qWsuGKw2kUGWYQsLoEZ4WOSFErYw_fBJgtuGkaZPpljXUxqm0CyJc2JOB_VeYPK5QKLrMMNOqGUNeiPSIeVqgi3exE3I8fGrdKlFXDepyePtJVBPVqQCOmhcb9JmV8YCkc3RqhZ4JSajACobS6-hJpsJajiLMK_AjwmrAVddAkvvb5FNDLgSu1ohOMKH3dL1_wx10MqwuSOt3gFW8GPtHD2q9WchlbWAUVtF5fulzBbT71Ol2e4s3p3yOF4zjETAuKCZudbv0T0HNlxbv3lrFIl5A0XwneBjiLouJyLRMe2S-7dc-20PnU493yTGMgx6uZ_BAhTBcHvwOGj5eSTpYgfG1r6rtD9YLe53zfQsu_V5_Os_Xyzu9hdrQc-agc8DOGSejqgE45Iyt3jjs7LuS2WjzR5zLxcb2t-0nxcMHxed7xZen5ZvXxfrjnVf3y49rxcZGufmufL9Zvvy083Z759FW8XUNSpbrz8oXW-WH50ed2XY805x27bUo7hJerO0mMKfRHdyZmoWJzpI8kFqlGiYiHe2prAsOytOsq7zUE4nI_EYuoVDOU3AeDwLPP-aM9273suPOZMp115Np2oGJioBRTweaaNVJYMQqcJ4VnnDOWcvnbbO3ND8K3ck_ljjl7B_-S08748t3VrIzMJBfTs5auH8Azj-u0Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%88%86%E5%B8%83%E5%BC%8F%E6%A8%A1%E5%9E%8B%E7%9A%84%E6%B5%81%E5%9F%9F%E6%B4%AA%E6%B0%B4%E6%97%B6%E7%A9%BA%E7%89%B9%E5%BE%81%E5%88%86%E6%9E%90%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B0%B4%E7%A7%91%E5%AD%A6%E8%BF%9B%E5%B1%95&rft.au=%E9%A9%AC%E5%BC%BA&rft.au=%E7%8E%8B%E8%8E%B9&rft.au=%E9%AD%8F%E7%90%B3&rft.au=%E5%8F%B2%E6%9C%9D%E6%97%AD&rft.date=2024-11-01&rft.pub=%E4%B8%AD%E5%9B%BD%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100038%25%E6%B2%B3%E6%B5%B7%E5%A4%A7%E5%AD%A6%E6%B0%B4%E6%96%87%E6%B0%B4%E8%B5%84%E6%BA%90%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E5%8D%97%E4%BA%AC+210098&rft.issn=1001-6791&rft.volume=35&rft.issue=5&rft.spage=726&rft.epage=737&rft_id=info:doi/10.14042%2Fj.cnki.32.1309.2024.05.004&rft.externalDocID=skxjz202405004 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fskxjz%2Fskxjz.jpg |