基于分布式模型的流域洪水时空特征分析方法

TV122; 为加深对极端暴雨条件下流域洪水形成机理的理解与认识,以"23·7"海河流域大清河特大洪水为例,提出一种基于分布式模型的流域洪水时空特征分析方法.采用时空变源分布式水文模拟方法,分别构建覆盖大清河南、北两支的分布式水文模型,开展分组并行模拟.结果表明:14个站点模拟洪峰误差平均值小于5%,纳什效率系数平均值为0.7,模拟结果较好."23·7"特大洪水大清河北支平均径流系数为0.55,远高于南支流域(0.27),致灾洪量主要来自北支.北支流域在洪水过程中呈现超渗、蓄满混合产流模式,当该区域累计雨量超过107 mm时,流域出现蓄满地表产流,当小时...

Full description

Saved in:
Bibliographic Details
Published in水科学进展 Vol. 35; no. 5; pp. 726 - 737
Main Authors 马强, 王莹, 魏琳, 史朝旭, 王浩雯, 张晓祥, 刘昌军
Format Journal Article
LanguageChinese
Published 中国水利水电科学研究院,北京 100038%河海大学水文水资源学院,江苏南京 210098 01.11.2024
江苏省流域地理空问智能工程研究中心,江苏南京 211100%水利部海河水利委员会水文局,天津 300181%江苏省流域地理空问智能工程研究中心,江苏南京 211100
河海大学地理与遥感学院,江苏南京 211100
Subjects
Online AccessGet full text
ISSN1001-6791
DOI10.14042/j.cnki.32.1309.2024.05.004

Cover

Abstract TV122; 为加深对极端暴雨条件下流域洪水形成机理的理解与认识,以"23·7"海河流域大清河特大洪水为例,提出一种基于分布式模型的流域洪水时空特征分析方法.采用时空变源分布式水文模拟方法,分别构建覆盖大清河南、北两支的分布式水文模型,开展分组并行模拟.结果表明:14个站点模拟洪峰误差平均值小于5%,纳什效率系数平均值为0.7,模拟结果较好."23·7"特大洪水大清河北支平均径流系数为0.55,远高于南支流域(0.27),致灾洪量主要来自北支.北支流域在洪水过程中呈现超渗、蓄满混合产流模式,当该区域累计雨量超过107 mm时,流域出现蓄满地表产流,当小时雨量超过15.3mm/h时,则可能出现超渗地表产流;对比大清河系南支,北支流域缺少大型控制性水利工程也是导致本次大清河特大洪水灾害发生的另一主要原因.
AbstractList TV122; 为加深对极端暴雨条件下流域洪水形成机理的理解与认识,以"23·7"海河流域大清河特大洪水为例,提出一种基于分布式模型的流域洪水时空特征分析方法.采用时空变源分布式水文模拟方法,分别构建覆盖大清河南、北两支的分布式水文模型,开展分组并行模拟.结果表明:14个站点模拟洪峰误差平均值小于5%,纳什效率系数平均值为0.7,模拟结果较好."23·7"特大洪水大清河北支平均径流系数为0.55,远高于南支流域(0.27),致灾洪量主要来自北支.北支流域在洪水过程中呈现超渗、蓄满混合产流模式,当该区域累计雨量超过107 mm时,流域出现蓄满地表产流,当小时雨量超过15.3mm/h时,则可能出现超渗地表产流;对比大清河系南支,北支流域缺少大型控制性水利工程也是导致本次大清河特大洪水灾害发生的另一主要原因.
Abstract_FL In order to deeply understand the mechanism of basin floods under the extreme rainfall condition,taking the"23·7"catastrophic flood occurred at the Daqinghe River as an example,a distributed modelling-based quantitative analysis approach to assess the spatiotemporal characteristics of basin flood is proposed in this study.The spatiotemporal variable-source hydrological simulation method has been taken to set up a distributed model consisted with 19 computation units covering the south and north branches of the Daqinghe River,and to run in parallel.The average flood peak error of the simulation results at 14 calibrated stations is lower than 5%,and the average Nash coefficient is 0.7.The results show that the averaged runoff coefficient of the north branch of the Daqinghe River is 0.55,which is much higher than that of the south branch by 0.27.The flow amount which causes this flood disaster mainly comes from the north branch.During the"23·7"catastrophic flood process,the north basin exhibits a mixed pattern of Dunne and Horton runoff generation mechanism.When the accumulated rainfall in the basin reaches 107mm,the Horton surface runoff will be appeared in the catchment.When the rainfall intensity exceeds 15.3mm/h,the Dunne surface runoff will be occurred.Meanwhile,compared to the south branch of the Daqinghe River,the lack of large-scale controlling projects in the main branch of north branch is another major reason led to this catastrophic flood disaster.The approach presented in this paper can provide technical references for the construction of flood model integrated in the digital twin system of other basins in China.
Author 王莹
张晓祥
魏琳
刘昌军
史朝旭
马强
王浩雯
AuthorAffiliation 中国水利水电科学研究院,北京 100038%河海大学水文水资源学院,江苏南京 210098;江苏省流域地理空问智能工程研究中心,江苏南京 211100%水利部海河水利委员会水文局,天津 300181%江苏省流域地理空问智能工程研究中心,江苏南京 211100;河海大学地理与遥感学院,江苏南京 211100
AuthorAffiliation_xml – name: 中国水利水电科学研究院,北京 100038%河海大学水文水资源学院,江苏南京 210098;江苏省流域地理空问智能工程研究中心,江苏南京 211100%水利部海河水利委员会水文局,天津 300181%江苏省流域地理空问智能工程研究中心,江苏南京 211100;河海大学地理与遥感学院,江苏南京 211100
Author_FL SHI Chaoxu
MA Qiang
LIU Changjun
WEI Lin
WANG Haowen
ZHANG Xiaoxiang
WANG Ying
Author_FL_xml – sequence: 1
  fullname: MA Qiang
– sequence: 2
  fullname: WANG Ying
– sequence: 3
  fullname: WEI Lin
– sequence: 4
  fullname: SHI Chaoxu
– sequence: 5
  fullname: WANG Haowen
– sequence: 6
  fullname: ZHANG Xiaoxiang
– sequence: 7
  fullname: LIU Changjun
Author_xml – sequence: 1
  fullname: 马强
– sequence: 2
  fullname: 王莹
– sequence: 3
  fullname: 魏琳
– sequence: 4
  fullname: 史朝旭
– sequence: 5
  fullname: 王浩雯
– sequence: 6
  fullname: 张晓祥
– sequence: 7
  fullname: 刘昌军
BookMark eNotj7tKA0EYhaeIYIx5CsFux39uuztgI8EbBGy0DnuZkWxkAy6i2AVFFCHaqGCRxU6tBKOYRXwaZ_Iajmh1mo9zvjOHank_VwgtEMCEA6dLGU7yXhczigkDiSlQjkFgAF5DdQJAPD-QZBY1i6IbA1AqAklZHS2bsvquhub8zHycmM8r-_hgRpfT-1P7NjBlacfP9mVs796nT9X0YmK-Bo60o2t7O7GvN_NoRkd7hWr-ZwPtrK1utza89tb6Zmul7RUECPfikEkZUZ-HKoilirXwZZjKgAaRhFAlTkSnKgkhBR5zxYj2HaRp6iSpEMAaaPGv9zDKdZTvdrL-wX7uFjtF7yg7_j0Lwl1lPyiIYus
ClassificationCodes TV122
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.14042/j.cnki.32.1309.2024.05.004
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
DocumentTitle_FL A modelling-based assessment approach of basin flood spatiotemporal characteristics
EndPage 737
ExternalDocumentID skxjz202405004
GroupedDBID -01
2B.
4A8
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CW9
PSX
TCJ
TGT
U1G
U5M
UY8
ID FETCH-LOGICAL-s1014-b8399a2648e7b9ebf5698d9727a908ec923fdec80d04b4e31f6ebff2d25725503
ISSN 1001-6791
IngestDate Thu May 29 04:03:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 产流模式
时空变源
distributed model
分布式模型
the"23.7"catastrophic flood
spatiotemporal variability
"23·7"特大洪水
大清河
rainstorm flood
Daqinghe River
暴雨洪水
runoff generation mechanism
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1014-b8399a2648e7b9ebf5698d9727a908ec923fdec80d04b4e31f6ebff2d25725503
PageCount 12
ParticipantIDs wanfang_journals_skxjz202405004
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle 水科学进展
PublicationTitle_FL Advances in Water Science
PublicationYear 2024
Publisher 中国水利水电科学研究院,北京 100038%河海大学水文水资源学院,江苏南京 210098
江苏省流域地理空问智能工程研究中心,江苏南京 211100%水利部海河水利委员会水文局,天津 300181%江苏省流域地理空问智能工程研究中心,江苏南京 211100
河海大学地理与遥感学院,江苏南京 211100
Publisher_xml – name: 河海大学地理与遥感学院,江苏南京 211100
– name: 江苏省流域地理空问智能工程研究中心,江苏南京 211100%水利部海河水利委员会水文局,天津 300181%江苏省流域地理空问智能工程研究中心,江苏南京 211100
– name: 中国水利水电科学研究院,北京 100038%河海大学水文水资源学院,江苏南京 210098
SSID ssib002257923
ssib023167946
ssj0039382
ssib025872836
ssib051373317
ssib000862358
Score 2.4227967
Snippet TV122;...
SourceID wanfang
SourceType Aggregation Database
StartPage 726
Title 基于分布式模型的流域洪水时空特征分析方法
URI https://d.wanfangdata.com.cn/periodical/skxjz202405004
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1BfUifuK3BZ2TpGYnk8kMeMnsZi2CnlrorWw2SdXCCrYF6a0oogjqRQUPLd7Uk2AVW8S_xqR_heB7L7O7Wa34cRneTua9ee_9svOVmTeOcyGBTtTPte_Krhau4Fnmdrzcc1PA209yJXwK13TtupyeFVfngrmxPd9ru5ZWlpOp7uqu50r-B1XIA1zxlOw_IDsQChlAA76QAsKQ_hXGLA6YbjMTsVhgqmLMUYopiYQBwieiyVSbxZJFikUN4oqZMiwOmQYugY8MMDasQE2FjWBRRISHNBA6ZEYiV6Sp0pApIDRVEVt2W7vEKrRHhKQykPqsuuqyPxquCQeZoAxJiFosAgmKGdDEkPBGnxFeDRZrrD9qWsuGKw2kUGWYQsLoEZ4WOSFErYw_fBJgtuGkaZPpljXUxqm0CyJc2JOB_VeYPK5QKLrMMNOqGUNeiPSIeVqgi3exE3I8fGrdKlFXDepyePtJVBPVqQCOmhcb9JmV8YCkc3RqhZ4JSajACobS6-hJpsJajiLMK_AjwmrAVddAkvvb5FNDLgSu1ohOMKH3dL1_wx10MqwuSOt3gFW8GPtHD2q9WchlbWAUVtF5fulzBbT71Ol2e4s3p3yOF4zjETAuKCZudbv0T0HNlxbv3lrFIl5A0XwneBjiLouJyLRMe2S-7dc-20PnU493yTGMgx6uZ_BAhTBcHvwOGj5eSTpYgfG1r6rtD9YLe53zfQsu_V5_Os_Xyzu9hdrQc-agc8DOGSejqgE45Iyt3jjs7LuS2WjzR5zLxcb2t-0nxcMHxed7xZen5ZvXxfrjnVf3y49rxcZGufmufL9Zvvy083Z759FW8XUNSpbrz8oXW-WH50ed2XY805x27bUo7hJerO0mMKfRHdyZmoWJzpI8kFqlGiYiHe2prAsOytOsq7zUE4nI_EYuoVDOU3AeDwLPP-aM9273suPOZMp115Np2oGJioBRTweaaNVJYMQqcJ4VnnDOWcvnbbO3ND8K3ck_ljjl7B_-S08748t3VrIzMJBfTs5auH8Azj-u0Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%88%86%E5%B8%83%E5%BC%8F%E6%A8%A1%E5%9E%8B%E7%9A%84%E6%B5%81%E5%9F%9F%E6%B4%AA%E6%B0%B4%E6%97%B6%E7%A9%BA%E7%89%B9%E5%BE%81%E5%88%86%E6%9E%90%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B0%B4%E7%A7%91%E5%AD%A6%E8%BF%9B%E5%B1%95&rft.au=%E9%A9%AC%E5%BC%BA&rft.au=%E7%8E%8B%E8%8E%B9&rft.au=%E9%AD%8F%E7%90%B3&rft.au=%E5%8F%B2%E6%9C%9D%E6%97%AD&rft.date=2024-11-01&rft.pub=%E4%B8%AD%E5%9B%BD%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100038%25%E6%B2%B3%E6%B5%B7%E5%A4%A7%E5%AD%A6%E6%B0%B4%E6%96%87%E6%B0%B4%E8%B5%84%E6%BA%90%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E5%8D%97%E4%BA%AC+210098&rft.issn=1001-6791&rft.volume=35&rft.issue=5&rft.spage=726&rft.epage=737&rft_id=info:doi/10.14042%2Fj.cnki.32.1309.2024.05.004&rft.externalDocID=skxjz202405004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fskxjz%2Fskxjz.jpg