基于池的无监督线性回归主动学习
在许多现实的机器学习应用场景中,获取大量未标注的数据是很容易的,但标注过程需要花费大量的时间和经济成本.因此,在这种情况下,需要选择一些最有价值的样本进行标注,从而只利用较少的标注数据就能训练出较好的机器学习模型.目前,主动学习(Active learning)已广泛应用于解决这种场景下的问题.但是,大多数现有的主动学习方法都是基于有监督场景:能够从少量带标签的样本中训练初始模型,基于模型查询新的样本,然后迭代更新模型.无监督情况下的主动学习却很少有人考虑,即在不知道任何标签信息的情况下最佳地选择要标注的初始训练样本.这种场景下,主动学习问题变得更加困难,因为无法利用任何标签信息.针对这一场景...
Saved in:
Published in | 自动化学报 Vol. 47; no. 12; pp. 2771 - 2783 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
华中科技大学人工智能与自动化学院图像信息处理与智能控制教育部重点实验室 武汉 430074
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 |
DOI | 10.16383/j.aas.c200071 |
Cover
Abstract | 在许多现实的机器学习应用场景中,获取大量未标注的数据是很容易的,但标注过程需要花费大量的时间和经济成本.因此,在这种情况下,需要选择一些最有价值的样本进行标注,从而只利用较少的标注数据就能训练出较好的机器学习模型.目前,主动学习(Active learning)已广泛应用于解决这种场景下的问题.但是,大多数现有的主动学习方法都是基于有监督场景:能够从少量带标签的样本中训练初始模型,基于模型查询新的样本,然后迭代更新模型.无监督情况下的主动学习却很少有人考虑,即在不知道任何标签信息的情况下最佳地选择要标注的初始训练样本.这种场景下,主动学习问题变得更加困难,因为无法利用任何标签信息.针对这一场景,本文研究了基于池的无监督线性回归问题,提出了一种新的主动学习方法,该方法同时考虑了信息性、代表性和多样性这三个标准.本文在3个不同的线性回归模型(岭回归、LASSO(Least absolute shrinkage and selection operator)和线性支持向量回归)和来自不同应用领域的12个数据集上进行了广泛的实验,验证了其有效性. |
---|---|
AbstractList | 在许多现实的机器学习应用场景中,获取大量未标注的数据是很容易的,但标注过程需要花费大量的时间和经济成本.因此,在这种情况下,需要选择一些最有价值的样本进行标注,从而只利用较少的标注数据就能训练出较好的机器学习模型.目前,主动学习(Active learning)已广泛应用于解决这种场景下的问题.但是,大多数现有的主动学习方法都是基于有监督场景:能够从少量带标签的样本中训练初始模型,基于模型查询新的样本,然后迭代更新模型.无监督情况下的主动学习却很少有人考虑,即在不知道任何标签信息的情况下最佳地选择要标注的初始训练样本.这种场景下,主动学习问题变得更加困难,因为无法利用任何标签信息.针对这一场景,本文研究了基于池的无监督线性回归问题,提出了一种新的主动学习方法,该方法同时考虑了信息性、代表性和多样性这三个标准.本文在3个不同的线性回归模型(岭回归、LASSO(Least absolute shrinkage and selection operator)和线性支持向量回归)和来自不同应用领域的12个数据集上进行了广泛的实验,验证了其有效性. |
Author | 刘子昂 伍冬睿 蒋雪 |
AuthorAffiliation | 华中科技大学人工智能与自动化学院图像信息处理与智能控制教育部重点实验室 武汉 430074 |
AuthorAffiliation_xml | – name: 华中科技大学人工智能与自动化学院图像信息处理与智能控制教育部重点实验室 武汉 430074 |
Author_FL | WU Dong-Rui LIU Zi-Ang JIANG Xue |
Author_FL_xml | – sequence: 1 fullname: LIU Zi-Ang – sequence: 2 fullname: JIANG Xue – sequence: 3 fullname: WU Dong-Rui |
Author_xml | – sequence: 1 fullname: 刘子昂 – sequence: 2 fullname: 蒋雪 – sequence: 3 fullname: 伍冬睿 |
BookMark | eNotj71KxEAURqdYwXXd1kewS7z3TpKZlLL4Bws2Wi-zmTvqIlkwiGJlYWUhaCO4qAFBbSzsNCK-TH5ew4BWX3fO-RZEJ52mLMQSgo-R1HJl4huT-QkBgMKO6AKFgRdgGM2LfpYdjAEQgWLErvCqx6Isrur3vLm7qG_zZnbd3D81xU99_lLNHqrvm_Ljq7p8rd6ey898Ucw5c5hx_397Ynd9bWew6Q23N7YGq0MvQ8DAk4qYmZACEzq0caSRJGvNbZ0jqRLNZG2irHSsbEIOjHNsIxU7GyvWsieW_7gnJnUm3RtNpsdHaWscndn90zEBIbbvAvkLmcFWkw |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.c200071 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Unsupervised Pool-Based Active Learning for Linear Regression |
EndPage | 2783 |
ExternalDocumentID | zdhxb202112004 |
GrantInformation_xml | – fundername: (湖北省技术创新专项基金); (国家自然科学基金); (NSFC-深圳机器人基础研究中心重点项目); (科技部政府间国际科技创新合作重点专项基金) funderid: (湖北省技术创新专项基金); (国家自然科学基金); (NSFC-深圳机器人基础研究中心重点项目); (科技部政府间国际科技创新合作重点专项基金) |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 4.4 457 4A8 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 93N AAIKJ AALRI AAQFI AAXUO ABJNI ABWVN ACGFS ACRPL ADEZE ADNMO ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CS3 CUBFJ CW9 EBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PSX Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S |
ID | FETCH-LOGICAL-s1014-372eee2124a5f1d968123e88e638f237c8e2ddc7d3fe7dc2f0affed679fd97e83 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | 主动学习;无监督学习;线性回归;支持向量回归;LASSO;岭回归 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1014-372eee2124a5f1d968123e88e638f237c8e2ddc7d3fe7dc2f0affed679fd97e83 |
PageCount | 13 |
ParticipantIDs | wanfang_journals_zdhxb202112004 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 自动化学报 |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2021 |
Publisher | 华中科技大学人工智能与自动化学院图像信息处理与智能控制教育部重点实验室 武汉 430074 |
Publisher_xml | – name: 华中科技大学人工智能与自动化学院图像信息处理与智能控制教育部重点实验室 武汉 430074 |
SSID | ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.356872 |
Snippet | 在许多现实的机器学习应用场景中,获取大量未标注的数据是很容易的,但标注过程需要花费大量的时间和经济成本.因此,在这种情况下,需要选择一些最有价值的样本进行标注,从而只利用较少的标注数据就能训练出较好的机器学习模型.目前,主动学习(Active... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 2771 |
Title | 基于池的无监督线性回归主动学习 |
URI | https://d.wanfangdata.com.cn/periodical/zdhxb202112004 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29b9QwFI9Ku8CA-BTfdMBTFbg4cWyPzl1ChYCpRd2qy4fpdEi0ldBNDEwMSLAgUQGVkICFgQ2KEP9M7-5PYOW9l1zjQiUKS-R7eX7--b3E79nnPHvetaBTqCKoODy8SviR4rnfB0fvWxUJUUDAz2nL_5278eJydGtFrMwc-ensWtrcyK8XwwO_K_kfqwIN7Ipfyf6DZfeEAgHKYF-4goXheigbs1QwnbHEsDTCq0pZGrMkYKbDUsk0UCKkaDmlJEwHVOgxE2IBaiUZ8qgOM5IEAk-KhaTHNCfJiiUJUpRhRmHBQPWYbmmQ7Aa4LFVMQXNmH7_qMh07FWO6JabWJhbF9FS27hBqkMRbFoVoFODQCNGY9g7A6DLVIykxM92mg0nmLmnw4LftIcTeI51RF6FdqAc6QA0RQFAJ4okaxbSdNqRy0BDwC4KqiQKAQ1RbLRAlH0YZGqsb3ug-Id2DHJWRnIyZGg9YNWvwoFUlaknFTlt_woiRXoMH9SakeC2QDXk4Szi2DswITCNURUrAW5raSulZ0NgFgF1TTLSAgvZMCc-b0gtRiHGi41e4iHyct7tOsE57On3ZuevSZH1GThMe4cksB7peGMhD8r39PrxTnILXNsjY2_o5LNce5Wj0gFMe3zmUD65p7mZy-55pI3kIfLXjeoQG7-JEqrHATIrtb4n7AZw_8OF3GLYzYzwmIXZWPkQQwjwdVx7qoE1gEitajm100-R3xU7d2Ncl-rhvYPuD-04cunTCO95MIOdNPRqc9GaGa6e8Y05a0dOeP3q7s7vzbPx5e_Lqyfjl9mTr-eT1u8nOj_HjD6OtN6PvL3a_fBs9_Tj69H736_YZbzlLl7qLfnMsir-OB2vDqMqrqoKQM-oLG5QaMwiGlVIVgLU8lIWqeFkWsgxtJcuC207f2qqMpballpUKz3qzgweD6pw3r6XVgcillGEEM5NcW2uDAhNIFXlhdXTeu9p0drUZ9tZX9xvwwl85LnpH23f8kje78XCzugyB_EZ-pTH6L-8tqIY |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B1%A0%E7%9A%84%E6%97%A0%E7%9B%91%E7%9D%A3%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%E4%B8%BB%E5%8A%A8%E5%AD%A6%E4%B9%A0&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E5%AD%90%E6%98%82&rft.au=%E8%92%8B%E9%9B%AA&rft.au=%E4%BC%8D%E5%86%AC%E7%9D%BF&rft.date=2021-12-01&rft.pub=%E5%8D%8E%E4%B8%AD%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B8%8E%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2%E5%9B%BE%E5%83%8F%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86%E4%B8%8E%E6%99%BA%E8%83%BD%E6%8E%A7%E5%88%B6%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E6%AD%A6%E6%B1%89+430074&rft.issn=0254-4156&rft.volume=47&rft.issue=12&rft.spage=2771&rft.epage=2783&rft_id=info:doi/10.16383%2Fj.aas.c200071&rft.externalDocID=zdhxb202112004 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |