基于MEEMD-KELM的短期风电功率预测

FM614; 风电功率时序信号是间歇性、波动性的非平稳信号,信号的平稳化处理是风电功率预测的关键.针对EEMD在分解风功率时序信号时存在模态混淆、伪分量和较大的重构误差等问题,将MEEMD用于风功率信号分解并与KELM模型相结合,提出了基于MEEMD-KELM的风电功率短期预测方法.该方法采用CEEMD将原始信号按频率高低依次分解,检测分量的排列熵值,通过熵值判断异常分量信号并将其从原始信号中剔除,再对分离后的信号进行EMD分解,得到的若干个IMF分量分别通过KELM模型进行组合预测.以上海某风场为例进行仿真实验,并与传统方法进行对比,结果表明该方法预测精度更优且更具稳定性....

Full description

Saved in:
Bibliographic Details
Published in电测与仪表 Vol. 57; no. 21; pp. 92 - 98
Main Authors 赵睿智, 丁云飞
Format Journal Article
LanguageChinese
Published 上海电机学院电气学院,上海201306 10.11.2020
Subjects
Online AccessGet full text
ISSN1001-1390
DOI10.19753/j.issn1001-1390.2020.21.013

Cover

Abstract FM614; 风电功率时序信号是间歇性、波动性的非平稳信号,信号的平稳化处理是风电功率预测的关键.针对EEMD在分解风功率时序信号时存在模态混淆、伪分量和较大的重构误差等问题,将MEEMD用于风功率信号分解并与KELM模型相结合,提出了基于MEEMD-KELM的风电功率短期预测方法.该方法采用CEEMD将原始信号按频率高低依次分解,检测分量的排列熵值,通过熵值判断异常分量信号并将其从原始信号中剔除,再对分离后的信号进行EMD分解,得到的若干个IMF分量分别通过KELM模型进行组合预测.以上海某风场为例进行仿真实验,并与传统方法进行对比,结果表明该方法预测精度更优且更具稳定性.
AbstractList FM614; 风电功率时序信号是间歇性、波动性的非平稳信号,信号的平稳化处理是风电功率预测的关键.针对EEMD在分解风功率时序信号时存在模态混淆、伪分量和较大的重构误差等问题,将MEEMD用于风功率信号分解并与KELM模型相结合,提出了基于MEEMD-KELM的风电功率短期预测方法.该方法采用CEEMD将原始信号按频率高低依次分解,检测分量的排列熵值,通过熵值判断异常分量信号并将其从原始信号中剔除,再对分离后的信号进行EMD分解,得到的若干个IMF分量分别通过KELM模型进行组合预测.以上海某风场为例进行仿真实验,并与传统方法进行对比,结果表明该方法预测精度更优且更具稳定性.
Author 丁云飞
赵睿智
AuthorAffiliation 上海电机学院电气学院,上海201306
AuthorAffiliation_xml – name: 上海电机学院电气学院,上海201306
Author_FL Ding Yunfei
Zhao Ruizhi
Author_FL_xml – sequence: 1
  fullname: Zhao Ruizhi
– sequence: 2
  fullname: Ding Yunfei
Author_xml – sequence: 1
  fullname: 赵睿智
– sequence: 2
  fullname: 丁云飞
BookMark eNo9j8tKw0AYhWdRwVr7FuJGEuefS5JZSo0XTHCj6zIzyS8tMgUHke4LgkJWrooQ0LXLbvo8tqFvYYri5hw4i-_j7JGOm7iSkAOgIahY8uNxOPLeAaUQAFc0ZJS1ASEF3iHd_32X9L0fGSqBxyKirEuOVvXye1nlaZqfBldpljfzWVN_rd_rzWfVvC1WL3VTPW8-ZuvF6z7ZQX3vy_5f98jtWXozuAiy6_PLwUkWeGh9gVVCALJCaaFiK5SVNmKAVqPlJkKUSczQUhAFl5igFEYmLC44VxpLYUreI4e_3CftULu74Xjy-OBa47Cw06nZfmNbE_8B3-lSlA
ClassificationCodes FM614
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19753/j.issn1001-1390.2020.21.013
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Short-term prediction of wind power based on MEEMD-KELM
EndPage 98
ExternalDocumentID dcyyb202021013
GrantInformation_xml – fundername: (国家自然科学基金资助项目); (上海市浦江人才计划)
  funderid: (国家自然科学基金资助项目); (上海市浦江人才计划)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1013-c9441f2d9a497c49c5c621fcafc3b6ff5872fc014d35f8f54b5827d339afe4be3
ISSN 1001-1390
IngestDate Thu May 29 03:55:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords 排列熵
KELM
MEEMD
模态混淆
风电功率预测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1013-c9441f2d9a497c49c5c621fcafc3b6ff5872fc014d35f8f54b5827d339afe4be3
PageCount 7
ParticipantIDs wanfang_journals_dcyyb202021013
PublicationCentury 2000
PublicationDate 2020-11-10
PublicationDateYYYYMMDD 2020-11-10
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-10
  day: 10
PublicationDecade 2020
PublicationTitle 电测与仪表
PublicationTitle_FL Electrical Measurement & Instrumentation
PublicationYear 2020
Publisher 上海电机学院电气学院,上海201306
Publisher_xml – name: 上海电机学院电气学院,上海201306
SSID ssib051374602
ssj0039791
ssib001129792
Score 2.2553334
Snippet FM614;...
SourceID wanfang
SourceType Aggregation Database
StartPage 92
Title 基于MEEMD-KELM的短期风电功率预测
URI https://d.wanfangdata.com.cn/periodical/dcyyb202021013
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0IqKhOCAeIo3PdQntGF37V3bx03iqALCqZV6q9a7azgFiaaH9lwJCaScOCGkSHDm2Eu_hzbqgX9gxuskG4J4XSzLnpmd8XjtsT1jE7IBc6hhPDcBy1ka8CgqArCT4b8yVgiRRxUrnIPsi3Rzmz_dSXZare8Nr6X9kWkXh7-MK_kfrUIZ6BWjZP9Bs3OiUAB50C-koGFI_0rHVCdU9Wkno5pjKvVA60EveKafD6gWVEERd5k-zXpUp1R1Ma8VzRhAuyrATJCQzFyVwHIpHEzs0FMEkJ2mGdtA9LWOA-loQqZDM-BJ0iyi2dxXFgsAFpEAu0c7fceRoou9ghmVyAukIs-r0s3tCViLOhe5eYea4WWen45Y4hCkxjZKsBGyFEkqJ92SFCHmV2Hi7irxGA9i08Z4jh5jYOSGzQG_vhHbd-w6PtsP3_WzfN4QqF_HXpliMBLZzTH4gTn9NsrejqN2WIfW_nSJd1kcHBgEgRU2vrF8IRai9irwOwDOegXbSywOuZOICZ6G89vQ8ATW7R_MvnmRbMwYevIbdlw42tDmw5cNy2nrKrnilzzrWd1_r5HW4avr5HLjIswb5PHp5OTbyXjRe6cfj6aTr2efJudfxtMPx6fvJtPx2_PPR2fH72-S7b7e6m4G_hmPYA-FDQoFJreNS5VzJQquiqRI48gWuS2YSa1NpIhtAUv1kiVW2oSbRMaiZEzltuKmYrfI2vD1sLpN1hkPTYmuB6kJeW6NlIZbXlalQKfJUNwhj7you_433dtdbvq7f4S4Ry4t-vF9sjZ6s189AMNzZB46df0AxwNbLg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMEEMD-KELM%E7%9A%84%E7%9F%AD%E6%9C%9F%E9%A3%8E%E7%94%B5%E5%8A%9F%E7%8E%87%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E8%B5%B5%E7%9D%BF%E6%99%BA&rft.au=%E4%B8%81%E4%BA%91%E9%A3%9E&rft.date=2020-11-10&rft.pub=%E4%B8%8A%E6%B5%B7%E7%94%B5%E6%9C%BA%E5%AD%A6%E9%99%A2%E7%94%B5%E6%B0%94%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7201306&rft.issn=1001-1390&rft.volume=57&rft.issue=21&rft.spage=92&rft.epage=98&rft_id=info:doi/10.19753%2Fj.issn1001-1390.2020.21.013&rft.externalDocID=dcyyb202021013
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg