基于MEEMD-KELM的短期风电功率预测
FM614; 风电功率时序信号是间歇性、波动性的非平稳信号,信号的平稳化处理是风电功率预测的关键.针对EEMD在分解风功率时序信号时存在模态混淆、伪分量和较大的重构误差等问题,将MEEMD用于风功率信号分解并与KELM模型相结合,提出了基于MEEMD-KELM的风电功率短期预测方法.该方法采用CEEMD将原始信号按频率高低依次分解,检测分量的排列熵值,通过熵值判断异常分量信号并将其从原始信号中剔除,再对分离后的信号进行EMD分解,得到的若干个IMF分量分别通过KELM模型进行组合预测.以上海某风场为例进行仿真实验,并与传统方法进行对比,结果表明该方法预测精度更优且更具稳定性....
Saved in:
Published in | 电测与仪表 Vol. 57; no. 21; pp. 92 - 98 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Chinese |
Published |
上海电机学院电气学院,上海201306
10.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-1390 |
DOI | 10.19753/j.issn1001-1390.2020.21.013 |
Cover
Abstract | FM614; 风电功率时序信号是间歇性、波动性的非平稳信号,信号的平稳化处理是风电功率预测的关键.针对EEMD在分解风功率时序信号时存在模态混淆、伪分量和较大的重构误差等问题,将MEEMD用于风功率信号分解并与KELM模型相结合,提出了基于MEEMD-KELM的风电功率短期预测方法.该方法采用CEEMD将原始信号按频率高低依次分解,检测分量的排列熵值,通过熵值判断异常分量信号并将其从原始信号中剔除,再对分离后的信号进行EMD分解,得到的若干个IMF分量分别通过KELM模型进行组合预测.以上海某风场为例进行仿真实验,并与传统方法进行对比,结果表明该方法预测精度更优且更具稳定性. |
---|---|
AbstractList | FM614; 风电功率时序信号是间歇性、波动性的非平稳信号,信号的平稳化处理是风电功率预测的关键.针对EEMD在分解风功率时序信号时存在模态混淆、伪分量和较大的重构误差等问题,将MEEMD用于风功率信号分解并与KELM模型相结合,提出了基于MEEMD-KELM的风电功率短期预测方法.该方法采用CEEMD将原始信号按频率高低依次分解,检测分量的排列熵值,通过熵值判断异常分量信号并将其从原始信号中剔除,再对分离后的信号进行EMD分解,得到的若干个IMF分量分别通过KELM模型进行组合预测.以上海某风场为例进行仿真实验,并与传统方法进行对比,结果表明该方法预测精度更优且更具稳定性. |
Author | 丁云飞 赵睿智 |
AuthorAffiliation | 上海电机学院电气学院,上海201306 |
AuthorAffiliation_xml | – name: 上海电机学院电气学院,上海201306 |
Author_FL | Ding Yunfei Zhao Ruizhi |
Author_FL_xml | – sequence: 1 fullname: Zhao Ruizhi – sequence: 2 fullname: Ding Yunfei |
Author_xml | – sequence: 1 fullname: 赵睿智 – sequence: 2 fullname: 丁云飞 |
BookMark | eNo9j8tKw0AYhWdRwVr7FuJGEuefS5JZSo0XTHCj6zIzyS8tMgUHke4LgkJWrooQ0LXLbvo8tqFvYYri5hw4i-_j7JGOm7iSkAOgIahY8uNxOPLeAaUQAFc0ZJS1ASEF3iHd_32X9L0fGSqBxyKirEuOVvXye1nlaZqfBldpljfzWVN_rd_rzWfVvC1WL3VTPW8-ZuvF6z7ZQX3vy_5f98jtWXozuAiy6_PLwUkWeGh9gVVCALJCaaFiK5SVNmKAVqPlJkKUSczQUhAFl5igFEYmLC44VxpLYUreI4e_3CftULu74Xjy-OBa47Cw06nZfmNbE_8B3-lSlA |
ClassificationCodes | FM614 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.19753/j.issn1001-1390.2020.21.013 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Short-term prediction of wind power based on MEEMD-KELM |
EndPage | 98 |
ExternalDocumentID | dcyyb202021013 |
GrantInformation_xml | – fundername: (国家自然科学基金资助项目); (上海市浦江人才计划) funderid: (国家自然科学基金资助项目); (上海市浦江人才计划) |
GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ADMLS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 GROUPED_DOAJ PSX TCJ TGT U1G U5M |
ID | FETCH-LOGICAL-s1013-c9441f2d9a497c49c5c621fcafc3b6ff5872fc014d35f8f54b5827d339afe4be3 |
ISSN | 1001-1390 |
IngestDate | Thu May 29 03:55:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | 排列熵 KELM MEEMD 模态混淆 风电功率预测 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1013-c9441f2d9a497c49c5c621fcafc3b6ff5872fc014d35f8f54b5827d339afe4be3 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_dcyyb202021013 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-10 |
PublicationDateYYYYMMDD | 2020-11-10 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | 电测与仪表 |
PublicationTitle_FL | Electrical Measurement & Instrumentation |
PublicationYear | 2020 |
Publisher | 上海电机学院电气学院,上海201306 |
Publisher_xml | – name: 上海电机学院电气学院,上海201306 |
SSID | ssib051374602 ssj0039791 ssib001129792 |
Score | 2.2553334 |
Snippet | FM614;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 92 |
Title | 基于MEEMD-KELM的短期风电功率预测 |
URI | https://d.wanfangdata.com.cn/periodical/dcyyb202021013 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0IqKhOCAeIo3PdQntGF37V3bx03iqALCqZV6q9a7azgFiaaH9lwJCaScOCGkSHDm2Eu_hzbqgX9gxuskG4J4XSzLnpmd8XjtsT1jE7IBc6hhPDcBy1ka8CgqArCT4b8yVgiRRxUrnIPsi3Rzmz_dSXZare8Nr6X9kWkXh7-MK_kfrUIZ6BWjZP9Bs3OiUAB50C-koGFI_0rHVCdU9Wkno5pjKvVA60EveKafD6gWVEERd5k-zXpUp1R1Ma8VzRhAuyrATJCQzFyVwHIpHEzs0FMEkJ2mGdtA9LWOA-loQqZDM-BJ0iyi2dxXFgsAFpEAu0c7fceRoou9ghmVyAukIs-r0s3tCViLOhe5eYea4WWen45Y4hCkxjZKsBGyFEkqJ92SFCHmV2Hi7irxGA9i08Z4jh5jYOSGzQG_vhHbd-w6PtsP3_WzfN4QqF_HXpliMBLZzTH4gTn9NsrejqN2WIfW_nSJd1kcHBgEgRU2vrF8IRai9irwOwDOegXbSywOuZOICZ6G89vQ8ATW7R_MvnmRbMwYevIbdlw42tDmw5cNy2nrKrnilzzrWd1_r5HW4avr5HLjIswb5PHp5OTbyXjRe6cfj6aTr2efJudfxtMPx6fvJtPx2_PPR2fH72-S7b7e6m4G_hmPYA-FDQoFJreNS5VzJQquiqRI48gWuS2YSa1NpIhtAUv1kiVW2oSbRMaiZEzltuKmYrfI2vD1sLpN1hkPTYmuB6kJeW6NlIZbXlalQKfJUNwhj7you_433dtdbvq7f4S4Ry4t-vF9sjZ6s189AMNzZB46df0AxwNbLg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMEEMD-KELM%E7%9A%84%E7%9F%AD%E6%9C%9F%E9%A3%8E%E7%94%B5%E5%8A%9F%E7%8E%87%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E8%B5%B5%E7%9D%BF%E6%99%BA&rft.au=%E4%B8%81%E4%BA%91%E9%A3%9E&rft.date=2020-11-10&rft.pub=%E4%B8%8A%E6%B5%B7%E7%94%B5%E6%9C%BA%E5%AD%A6%E9%99%A2%E7%94%B5%E6%B0%94%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7201306&rft.issn=1001-1390&rft.volume=57&rft.issue=21&rft.spage=92&rft.epage=98&rft_id=info:doi/10.19753%2Fj.issn1001-1390.2020.21.013&rft.externalDocID=dcyyb202021013 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg |