基于VIC和MLP-ANN模型重建中国陆地水储量数据

P46; 基于GRACE重力卫星的产品数据为大尺度的陆地水储量研究提供了重要支撑,但由于数据长度有限,无法满足长序列研究需求.基于气象和水文观测数据,利用可变下渗容量曲线(VIC)模型在中国十大水资源分区构建了流域水循环模型,基于模型输出的土壤水和雪水储量,并结合气象观测数据,构建了基于多层感知器的人工神经网络模型(MLP-ANN),重建了中国地区1980-2018年高分辨率(0.25°)的陆地水储量距平(TWSA)月尺度数据集,并利用2003-2018年的GRACE数据对重建的TWSA进行评估.结果表明:①VIC模型总体具有较好的模拟效果,且湿润流域的模拟精度优于半干旱流域;②重建的TWSA...

Full description

Saved in:
Bibliographic Details
Published in水科学进展 Vol. 35; no. 5; pp. 711 - 725
Main Authors 巨佳丽, 武传号, 胡晓农, 龚郑洁
Format Journal Article
LanguageChinese
Published 长江保护与绿色发展研究院,江苏南京 210098%济南大学水利与环境学院,山东济南 250022%暨南大学生命科学技术学院,广东 广州 510632 01.11.2024
中国地质大学(北京)水资源与环境学院,北京 100083%河海大学水灾害防御全国重点实验室,江苏南京 210098
Subjects
Online AccessGet full text
ISSN1001-6791
DOI10.14042/j.cnki.32.1309.2024.05.003

Cover

Abstract P46; 基于GRACE重力卫星的产品数据为大尺度的陆地水储量研究提供了重要支撑,但由于数据长度有限,无法满足长序列研究需求.基于气象和水文观测数据,利用可变下渗容量曲线(VIC)模型在中国十大水资源分区构建了流域水循环模型,基于模型输出的土壤水和雪水储量,并结合气象观测数据,构建了基于多层感知器的人工神经网络模型(MLP-ANN),重建了中国地区1980-2018年高分辨率(0.25°)的陆地水储量距平(TWSA)月尺度数据集,并利用2003-2018年的GRACE数据对重建的TWSA进行评估.结果表明:①VIC模型总体具有较好的模拟效果,且湿润流域的模拟精度优于半干旱流域;②重建的TWSA在空间分布上与GRACE数据高度一致,可以较好地捕捉到绝大部分流域TWSA的年际变化特征及趋势;③1980-2018年,TWSA在华北平原、辽东、松花江西部、西南及西北部分地区呈显著下降趋势(>5 mm/a),而显著上升趋势主要集中在西部的少部分地区(>20 mm/a).重建的TWSA数据可为中国地区的水文气象研究提供数据支撑.
AbstractList P46; 基于GRACE重力卫星的产品数据为大尺度的陆地水储量研究提供了重要支撑,但由于数据长度有限,无法满足长序列研究需求.基于气象和水文观测数据,利用可变下渗容量曲线(VIC)模型在中国十大水资源分区构建了流域水循环模型,基于模型输出的土壤水和雪水储量,并结合气象观测数据,构建了基于多层感知器的人工神经网络模型(MLP-ANN),重建了中国地区1980-2018年高分辨率(0.25°)的陆地水储量距平(TWSA)月尺度数据集,并利用2003-2018年的GRACE数据对重建的TWSA进行评估.结果表明:①VIC模型总体具有较好的模拟效果,且湿润流域的模拟精度优于半干旱流域;②重建的TWSA在空间分布上与GRACE数据高度一致,可以较好地捕捉到绝大部分流域TWSA的年际变化特征及趋势;③1980-2018年,TWSA在华北平原、辽东、松花江西部、西南及西北部分地区呈显著下降趋势(>5 mm/a),而显著上升趋势主要集中在西部的少部分地区(>20 mm/a).重建的TWSA数据可为中国地区的水文气象研究提供数据支撑.
Abstract_FL The product data based on GRACE gravity satellites provide important support for large-scale terrestrial water storage(TWS)research.However,these data cannot meet the needs of long-term sequence research because of the limited data length.Based on meteorological and hydrological observation data,a variable infiltration capability(VIC)model was constructed in the ten water resource zones in China.Based on the soil water and snow water storage output from the VIC model and meteorological observation data,an artificial neural network model based on a multilayer perceptron was developed to reconstruct a long-term(1980-2018),high-resolution(0.25° × 0.25°)monthly TWS anomaly(TWSA)dataset in China.The reconstructed TWSA data were evaluated using GRACE data from 2003 to 2018.The results demonstrate the following:① The VIC model exhibits overall good simulation performance,with better performance in humid basins than in semi-arid basins.② The reconstructed TWSA dataset is highly consistent with the GRACE data at the spatial scale and can effectively capture interannual variations and evolution trends of the TWSA in most basins,especially in humid basins.③ From 1980 to 2018,the TWSA exhibited a significant downward trend(>5 mm/a)in the North China Plain,Eastern Liaoning,Southern Songhua,and Southwest and Northwest parts of China,while a significant upward trend(>20 mm/a)was mainly concentrated in some regions of Western China.The TWSA data constructed can provide data support for hydrological and meteorological research in China.
Author 武传号
巨佳丽
胡晓农
龚郑洁
AuthorAffiliation 中国地质大学(北京)水资源与环境学院,北京 100083%河海大学水灾害防御全国重点实验室,江苏南京 210098;长江保护与绿色发展研究院,江苏南京 210098%济南大学水利与环境学院,山东济南 250022%暨南大学生命科学技术学院,广东 广州 510632
AuthorAffiliation_xml – name: 中国地质大学(北京)水资源与环境学院,北京 100083%河海大学水灾害防御全国重点实验室,江苏南京 210098;长江保护与绿色发展研究院,江苏南京 210098%济南大学水利与环境学院,山东济南 250022%暨南大学生命科学技术学院,广东 广州 510632
Author_FL GONG Zhengjie
HU Xiaonong
WU Chuanhao
JU Jiali
Author_FL_xml – sequence: 1
  fullname: JU Jiali
– sequence: 2
  fullname: WU Chuanhao
– sequence: 3
  fullname: HU Xiaonong
– sequence: 4
  fullname: GONG Zhengjie
Author_xml – sequence: 1
  fullname: 巨佳丽
– sequence: 2
  fullname: 武传号
– sequence: 3
  fullname: 胡晓农
– sequence: 4
  fullname: 龚郑洁
BookMark eNotjz9Lw0Achm-oYK39FIJbzt_d5S45txL8U6jVQV3L9XKRppKCQRRHBzvUKggOoihuXZQMDhLx2_QC-RZG9F1eeIfn5VlCtWSUGIRWCGDigkvXYqyT4QAzigkDiSlQFwPHAKyG6gSAOMKTZBE103TQB6CUe5KyOlq3L_k8vzlsB_bueqez57S63WL2ap8n5Xhqv_L555t9_C4fruxTVmQf9nJWjm-L-6yYvi-jhUgdp6b53w10sLmxH2w7nd2tdtDqOCkBwhzFtM89YTyhqviCKNeAIaHknqf7XHPDpGYmCnm1RJIpoUPpKyW1cI1PKGug1T_umUoilRz14tHpSVI99tLheXzxqwq8EmU_3wNdtw
ClassificationCodes P46
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.14042/j.cnki.32.1309.2024.05.003
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
DocumentTitle_FL Reconstruction of terrestrial water storage data in China based on VIC and MLP-ANN models
EndPage 725
ExternalDocumentID skxjz202405003
GroupedDBID -01
2B.
4A8
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CW9
PSX
TCJ
TGT
U1G
U5M
UY8
ID FETCH-LOGICAL-s1013-a3c8576e76aaaa861a4e0e1d9577cb5c5e39c3efd5957f93a6cd98aa9c64e8123
ISSN 1001-6791
IngestDate Thu May 29 04:03:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords VIC模型
十大水资源分区
artificial neural network
陆地水储量
人工神经网络
GRACE
data reconstruction
数据重建
VIC model
ten water resource zones
terrestrial water storage
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1013-a3c8576e76aaaa861a4e0e1d9577cb5c5e39c3efd5957f93a6cd98aa9c64e8123
PageCount 15
ParticipantIDs wanfang_journals_skxjz202405003
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle 水科学进展
PublicationTitle_FL Advances in Water Science
PublicationYear 2024
Publisher 长江保护与绿色发展研究院,江苏南京 210098%济南大学水利与环境学院,山东济南 250022%暨南大学生命科学技术学院,广东 广州 510632
中国地质大学(北京)水资源与环境学院,北京 100083%河海大学水灾害防御全国重点实验室,江苏南京 210098
Publisher_xml – name: 长江保护与绿色发展研究院,江苏南京 210098%济南大学水利与环境学院,山东济南 250022%暨南大学生命科学技术学院,广东 广州 510632
– name: 中国地质大学(北京)水资源与环境学院,北京 100083%河海大学水灾害防御全国重点实验室,江苏南京 210098
SSID ssib002257923
ssib023167946
ssj0039382
ssib025872836
ssib051373317
ssib000862358
Score 2.4225993
Snippet P46;...
SourceID wanfang
SourceType Aggregation Database
StartPage 711
Title 基于VIC和MLP-ANN模型重建中国陆地水储量数据
URI https://d.wanfangdata.com.cn/periodical/skxjz202405003
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5CAupFfOLbgPZpmTgz_fbWMztrFBM8JJJbmJmd9RFYwSQgOXowB42C4EEUxVsuSg6CEvHfZBfyL6zq6d2dEN_L0mxqarq-_qrTXd30w_Mu4-ZIFubap7kofaZ44Ctoiv0oo20VFTzKS9yNPDMrpufZjQW-MDb-pbZqaXUlnyrWfrqv5H-8CjLwK-6S_QfPDjMFAfwG_0IKHob0r3xMUk50i8SGpAxTld6-nlhhRFQyc_OWb2ZnSSqIUcSE9kFKVExSTZQkqomSOB68DzpWokHSRB0NasJKEhIHmA-kMUOJijBPl08LH2nudCBbk9Zj3tqLkhhJtEUCtgxkrkjcQouIJCTVTZhYAaxAWiMM4cTUYYybIxUxyAWeJMQEFhnwIUcqiihqyy6wOJpaFfidjFQ0iVOijS0NtegEgq3ueBnMiETMbQ0c1GFLEEf0qB6iHxAGFKZpWTDEMAdZpVhyJLplAYHByEGtuLAlt-wERFc0gY5wPjAR_B_UrCh0IZLOkWstnfNN0oCBdaAVibjV5tbwUIkjICNr3Nf9qdBkHS6kxtoA84rW3qpjstDhW72ok_12GxD8QgDnMAHL6NHfYJJIgLaGgRush_vrjGVX2coGJh3Kn4LTlnIHrlET2cql0wb0FaI-841nhflCVle7Dbru6qQb10TxWj8sXQ9ehXSy2lu_L1pg0GPZcKHoLt2bohFejY6b1yJmT_MN6ChIGi5dXV56dH8NVQJuTxmeiKTE9SETJm7GrT0zBbS24AC6zfpJnREeQKFHMzERVxIC_eHfPKR4mepw7ohqqqqFG46FA96lQQmu_Bq_3YnY7WTdO7Wgee6Id9iNdidN1XQd9cbW7h7zDl4r3Tn5x72rvffbO9vPodnqvXzmGqz-5ofeu6e76xu9b9s7Xz_23nzfff2k93arv_W593hzd_1F_9VWf-PTCW--lc4l0767zsVfDvEOmYwWiktRSpHBR4kwY2VQhm3NpSxyXvCS6oKWnTYHSUfTTBRtrbJMF4KVMA6hJ73x7oNuecqbbCtRlAqGOpyVDMa0wJzI2xz6m4ypTq5OexdduRddc728uNdxZ_6ocdY7NGpcznnjKw9Xy_MwAFnJLzhn_wA3_dE1
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EVIC%E5%92%8CMLP-ANN%E6%A8%A1%E5%9E%8B%E9%87%8D%E5%BB%BA%E4%B8%AD%E5%9B%BD%E9%99%86%E5%9C%B0%E6%B0%B4%E5%82%A8%E9%87%8F%E6%95%B0%E6%8D%AE&rft.jtitle=%E6%B0%B4%E7%A7%91%E5%AD%A6%E8%BF%9B%E5%B1%95&rft.au=%E5%B7%A8%E4%BD%B3%E4%B8%BD&rft.au=%E6%AD%A6%E4%BC%A0%E5%8F%B7&rft.au=%E8%83%A1%E6%99%93%E5%86%9C&rft.au=%E9%BE%9A%E9%83%91%E6%B4%81&rft.date=2024-11-01&rft.pub=%E9%95%BF%E6%B1%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E7%BB%BF%E8%89%B2%E5%8F%91%E5%B1%95%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E5%8D%97%E4%BA%AC+210098%25%E6%B5%8E%E5%8D%97%E5%A4%A7%E5%AD%A6%E6%B0%B4%E5%88%A9%E4%B8%8E%E7%8E%AF%E5%A2%83%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E4%B8%9C%E6%B5%8E%E5%8D%97+250022%25%E6%9A%A8%E5%8D%97%E5%A4%A7%E5%AD%A6%E7%94%9F%E5%91%BD%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E+510632&rft.issn=1001-6791&rft.volume=35&rft.issue=5&rft.spage=711&rft.epage=725&rft_id=info:doi/10.14042%2Fj.cnki.32.1309.2024.05.003&rft.externalDocID=skxjz202405003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fskxjz%2Fskxjz.jpg