基于Attention和残差网络的非侵入式负荷监测

TM714; 非侵入式负荷监测(non-intrusive load monitoring,NILM)可以从家庭电能表的总功率读数,估算出各用电器的功率.由于对于同一类用电器,其状态种类、各状态持续时长、各状态的功率波形都不同,这使得基于特征工程和聚类的模型的泛化能力不强;回归模型的分解功率难以迅速跟踪真实功率.针对这些问题,文中将回归问题转化为在序列每个时刻的多分类问题,并提出基于Attention和残差网络的非侵入式负荷监测模型.该模型基于具有编码器和解码器的seq2seq框架,首先通过嵌入矩阵将高维稀疏one-hot向量映射为低维稠密向量;在编码部分,通过双向GRU从前后两个方向提取序列...

Full description

Saved in:
Bibliographic Details
Published in电测与仪表 Vol. 61; no. 6; pp. 173 - 180
Main Authors 何健明, 李梦诗, 张禄亮, 季天瑶
Format Journal Article
LanguageChinese
Published 华南理工大学,广州 510006 15.06.2024
Subjects
Online AccessGet full text
ISSN1001-1390
DOI10.19753/j.issn1001-1390.2024.06.023

Cover

Abstract TM714; 非侵入式负荷监测(non-intrusive load monitoring,NILM)可以从家庭电能表的总功率读数,估算出各用电器的功率.由于对于同一类用电器,其状态种类、各状态持续时长、各状态的功率波形都不同,这使得基于特征工程和聚类的模型的泛化能力不强;回归模型的分解功率难以迅速跟踪真实功率.针对这些问题,文中将回归问题转化为在序列每个时刻的多分类问题,并提出基于Attention和残差网络的非侵入式负荷监测模型.该模型基于具有编码器和解码器的seq2seq框架,首先通过嵌入矩阵将高维稀疏one-hot向量映射为低维稠密向量;在编码部分,通过双向GRU从前后两个方向提取序列信息,引入Attention机制计算序列中当前时刻最重要的信息,引入残差连接学习残差部分输入输出之间的差异;在解码部分,用回归层组合BiG-RU解码结果,取经过softmax函数处理的最大概率功率类别作为结果.该模型在选取REFIT数据集中表现良好,其中测试集与训练集完全独立,表明训练好的模型可以直接应用在新的住宅用户中.
AbstractList TM714; 非侵入式负荷监测(non-intrusive load monitoring,NILM)可以从家庭电能表的总功率读数,估算出各用电器的功率.由于对于同一类用电器,其状态种类、各状态持续时长、各状态的功率波形都不同,这使得基于特征工程和聚类的模型的泛化能力不强;回归模型的分解功率难以迅速跟踪真实功率.针对这些问题,文中将回归问题转化为在序列每个时刻的多分类问题,并提出基于Attention和残差网络的非侵入式负荷监测模型.该模型基于具有编码器和解码器的seq2seq框架,首先通过嵌入矩阵将高维稀疏one-hot向量映射为低维稠密向量;在编码部分,通过双向GRU从前后两个方向提取序列信息,引入Attention机制计算序列中当前时刻最重要的信息,引入残差连接学习残差部分输入输出之间的差异;在解码部分,用回归层组合BiG-RU解码结果,取经过softmax函数处理的最大概率功率类别作为结果.该模型在选取REFIT数据集中表现良好,其中测试集与训练集完全独立,表明训练好的模型可以直接应用在新的住宅用户中.
Abstract_FL Non-Intrusive load monitoring(NILM)is a technique to disaggregate the power consumption of the ap-pliances from the total power reading of the household electricity meter.Even for the same type of appliances,their state types,the duration of each state and the power waveform of each state are different,which requires high gen-eralization ability of the model based on feature engineering and clustering.Meanwhile,the disaggregate power of the regression model is difficult to quickly track the ground true power.To solve these problems,the regression problem is transformed into a multi-classification problem for each moment in the sequence,and a non-intrusive load monitoring model based on attention mechanism and residual networks is proposed in this paper.The proposed model is based on the seq2seq framework with encoder and decoder.Firstly,the high-dimensional sparse one-hot vector is mapped to the low-dimensional dense vector through the embedding matrix.In the encoder,BiGRU is used to extract the sequence information from the front and back directions,an attention mechanism is introduced to calculate the most important information at the current time in the sequence,and a residual connection is intro-duced to learn the difference between the input and output of the residual part.In the decoder,the regression layer is used to combine the BiGRU decoding results,and the maximum probability power category processed by a soft-max function is taken as the result.The model performs well in the REFIT dataset,and the testing dataset and training dataset are completely independent,which indicates that the trained model can be directly applied to new households.
Author 季天瑶
何健明
李梦诗
张禄亮
AuthorAffiliation 华南理工大学,广州 510006
AuthorAffiliation_xml – name: 华南理工大学,广州 510006
Author_FL JI Tianyao
HE Jianming
ZHANG Luliang
LI Mengshi
Author_FL_xml – sequence: 1
  fullname: HE Jianming
– sequence: 2
  fullname: LI Mengshi
– sequence: 3
  fullname: ZHANG Luliang
– sequence: 4
  fullname: JI Tianyao
Author_xml – sequence: 1
  fullname: 何健明
– sequence: 2
  fullname: 李梦诗
– sequence: 3
  fullname: 张禄亮
– sequence: 4
  fullname: 季天瑶
BookMark eNo9j7tKA0EYRqeIYIx5C7Hb9Z_LzuyUIXiDgI3WYXackQ0yC86KpNcqXohlvKSyTWUIxMvTZLPxLYwoVge-4nycNVRxmTMIbWAIsRQR3eqEqfcOA-AAUwkhAcJC4CEQWkHV_30V1b1PE4gwFYwDqSJZDKez6W0jz43L08wV99fzUa-YjMqPfvn2WA4uv56eZ5_j4uqleL9bvA4XN5PyoT8f99bRilWn3tT_WENHO9uHzb2gdbC732y0Ao8B00CCUFYRYgUANdIqEzOMsZSSxFYzxYxKuOKR1ownWhMQ3FAhIFYUrJaG1tDmr_dCOavcSbuTnZ-55WP7WHe7yU8pLFMo_Qa7ml6Q
ClassificationCodes TM714
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19753/j.issn1001-1390.2024.06.023
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Non-intrusive load monitoring algorithm based on attention and residual networks
EndPage 180
ExternalDocumentID dcyyb202406023
GrantInformation_xml – fundername: (国家自然科学基金); (广州市基础与应用基础研究项目)
  funderid: (国家自然科学基金); (广州市基础与应用基础研究项目)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1013-907afa22f7003e9fae8411199928fc4a4eab6a65cc46bcc2076e37708a30fc9e3
ISSN 1001-1390
IngestDate Thu May 29 03:55:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords BiGRU
注意力机制
deep learning
non-intrusive load monitoring
attention mechanism
深度学习
非侵入式负荷监测
residual network
残差网络
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1013-907afa22f7003e9fae8411199928fc4a4eab6a65cc46bcc2076e37708a30fc9e3
PageCount 8
ParticipantIDs wanfang_journals_dcyyb202406023
PublicationCentury 2000
PublicationDate 2024-06-15
PublicationDateYYYYMMDD 2024-06-15
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-15
  day: 15
PublicationDecade 2020
PublicationTitle 电测与仪表
PublicationTitle_FL Electrical Measurement & Instrumentation
PublicationYear 2024
Publisher 华南理工大学,广州 510006
Publisher_xml – name: 华南理工大学,广州 510006
SSID ssib051374602
ssj0039791
ssib001129792
Score 2.3570535
Snippet TM714; 非侵入式负荷监测(non-intrusive load...
SourceID wanfang
SourceType Aggregation Database
StartPage 173
Title 基于Attention和残差网络的非侵入式负荷监测
URI https://d.wanfangdata.com.cn/periodical/dcyyb202406023
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btRAcJWHhEiBeIpnSJGp0AU_1vsoKNZ3PkWI0JBI6aK1Y0N1SORSJHWowkOh5JWKNhVRpPD4mlwu_AUza9-dEYhXY409szOzO_bOeHd2l7FZ6fnKruaikeJPcoOHomigG87wNgpSa4PCWhqHXLgv5pf43eVoeWz8Ti1rab2bzmWbv1xX8j9WxWdoV1ol-w-WHTLFBwijffGKFsbrX9kYkgh0G2IDCaerSky3W-YvOlQAqgmJAJOAiulJLAlOJMQt0L4DYtBNAjQW55Bo0IhKHMME4ohKqQiMA-ImqDYkCmJOchFQLeJJxWPHUFARFddDXofljlWFdcyxbCklBmOIlfHBDPNqHQYVKeX7Tr4ATYVGJIJ0JS5YwwCMcFzaoOWIxOlsPNIB8VRB11AmqZOYFpjQARyMdvr6EIv6gEjAKXGrXBLqXmGnVyndAbpsBQ-UGDR0NGApB0IEvtAOqyFuV2Q6uRXR7IeouQdKQMOY2av7j3Iz-eo7qTsDvzykpYor_PLEqp9cFq1sdj6LJAwFzFHN3M6yQThy1cMEytVsYyMlEk8gwTibDKSkLIVJ01q492AUD2M0J0fT5pEfSi684f5qNKfrRiQGUk-x2YFKt3-jkFvg1ils52EtFls8y85UP1EzpvwizrGxzUfn2VRta80LTPd2D48OXwy_h96rZ8d7272Dvf6Xnf6nt_3XW9_evT_6ut97-qH3-eXJx92T5wf9NzvH-9sX2VI7WWzON6pjQhprPp1Noj1pCxsEhcQa5bqwueLowfHPJ1BFxi3PbSqsiLKMizTLAuyU8lBKT9nQKzKdh5fYROdxJ7_MZmxuw8L3ck8VAS94aDH4TXNJB7zJFPuxK-xmVfGVqhtYW_nRFFf_SHGNnR69tdfZRPfJen4DA9tuOl2Zb9oNDH0HYkp89A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EAttention%E5%92%8C%E6%AE%8B%E5%B7%AE%E7%BD%91%E7%BB%9C%E7%9A%84%E9%9D%9E%E4%BE%B5%E5%85%A5%E5%BC%8F%E8%B4%9F%E8%8D%B7%E7%9B%91%E6%B5%8B&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E4%BD%95%E5%81%A5%E6%98%8E&rft.au=%E6%9D%8E%E6%A2%A6%E8%AF%97&rft.au=%E5%BC%A0%E7%A6%84%E4%BA%AE&rft.au=%E5%AD%A3%E5%A4%A9%E7%91%B6&rft.date=2024-06-15&rft.pub=%E5%8D%8E%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%2C%E5%B9%BF%E5%B7%9E+510006&rft.issn=1001-1390&rft.volume=61&rft.issue=6&rft.spage=173&rft.epage=180&rft_id=info:doi/10.19753%2Fj.issn1001-1390.2024.06.023&rft.externalDocID=dcyyb202406023
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg