城市地下空间安全监测与预警指标研究

U231; 为保障城市地下空间开发利用的安全性,促进城市可持续发展,通过文献调研、现场调查和专家咨询等方法,分析提出城市地下空间监测的五项原则,将监测对象划分为三类:工程结构本体、周围岩土体以及周边环境.将监测指标归纳为变形类、力学类、振动类和宏观状态类共四类,其中变形类指标执行双控要求,其他三种指标执行单控要求.监测趋势预测分析可采用公式法、回归分析法、时间序列分析法、灰色预测法、神经网络法和支持向量机法等.全国各地监测控制值基本一致,但预警分级标准存在地区差异,其中北京市和广州市分级预警具有较大参考价值.目前城市地下空间安全监测存在七项不足:预警分级标准不完善,人工监测效率低,监测参数单一...

Full description

Saved in:
Bibliographic Details
Published in地质与勘探 Vol. 60; no. 1; pp. 95 - 104
Main Authors 李守雷, 梁为群, 陈晓斌, 谢群勇, 肖亚子, 孙清峰
Format Journal Article
LanguageChinese
Published 中国电建集团中南勘测设计研究院有限公司,湖南长沙 410014%中南大学土木工程学院,湖南长沙 410075 2024
Subjects
Online AccessGet full text
ISSN0495-5331
DOI10.12134/j.dzykt.2024.01.010

Cover

Abstract U231; 为保障城市地下空间开发利用的安全性,促进城市可持续发展,通过文献调研、现场调查和专家咨询等方法,分析提出城市地下空间监测的五项原则,将监测对象划分为三类:工程结构本体、周围岩土体以及周边环境.将监测指标归纳为变形类、力学类、振动类和宏观状态类共四类,其中变形类指标执行双控要求,其他三种指标执行单控要求.监测趋势预测分析可采用公式法、回归分析法、时间序列分析法、灰色预测法、神经网络法和支持向量机法等.全国各地监测控制值基本一致,但预警分级标准存在地区差异,其中北京市和广州市分级预警具有较大参考价值.目前城市地下空间安全监测存在七项不足:预警分级标准不完善,人工监测效率低,监测参数单一,监测信息缺少共享协同,测量精度较低,重监测轻预测以及缺乏数据融合和机器学习应用.针对这些问题,可采取七项措施进行改进:建立合理预警分级标准,发展自动化与智能化监测,多参数综合监测,应用远程监测与云平台,开发高精度测量设备,监测和预测并重,以及数据融合与机器学习应用.
AbstractList U231; 为保障城市地下空间开发利用的安全性,促进城市可持续发展,通过文献调研、现场调查和专家咨询等方法,分析提出城市地下空间监测的五项原则,将监测对象划分为三类:工程结构本体、周围岩土体以及周边环境.将监测指标归纳为变形类、力学类、振动类和宏观状态类共四类,其中变形类指标执行双控要求,其他三种指标执行单控要求.监测趋势预测分析可采用公式法、回归分析法、时间序列分析法、灰色预测法、神经网络法和支持向量机法等.全国各地监测控制值基本一致,但预警分级标准存在地区差异,其中北京市和广州市分级预警具有较大参考价值.目前城市地下空间安全监测存在七项不足:预警分级标准不完善,人工监测效率低,监测参数单一,监测信息缺少共享协同,测量精度较低,重监测轻预测以及缺乏数据融合和机器学习应用.针对这些问题,可采取七项措施进行改进:建立合理预警分级标准,发展自动化与智能化监测,多参数综合监测,应用远程监测与云平台,开发高精度测量设备,监测和预测并重,以及数据融合与机器学习应用.
Abstract_FL In order to ensure the safety of the development and utilization of urban underground space and promote the sustainable development of cities,this work proposed five principles of urban underground space monitoring by means of literature investigation,field investigation and expert consultation.The monitoring objects were divided into three categories,i.e.,engineering structure,surrounding rock and soil mass,and surrounding environment.The monitoring indexes were summarized into four categories of deformation,mechanics,vibration and macrostate,among which the deformation indexes implemented double control requirements,and the other three indexes implemented single control requirements.The prediction of monitoring trends adopted the formula method,regression analysis method,time series analysis method,gray prediction method,neural network method and support vector machine method.The monitoring control values were basically the same throughout the country,but the early warning classification standards varied between different cities.The graded early warning of Beijing and Guangzhou cities provides significant reference for other areas.Seven deficiencies have been proposed for the safety monitoring of urban underground space,i.e.,imperfect standards of warning classification,low efficiency of manual monitoring,single monitoring parameters,lack of monitoring information sharing,poor measurement accuracy,emphasis on monitoring rather than prediction,and lack of data fusion and machine learning applications.In view of these problems,seven measures were recommended,i.e.,the establishment of reasonable early warning classification standards,the development of automation and intelligent monitoring,multi-parameter comprehensive monitoring,the application of remote monitoring and cloud platform,the development of high-precision measurement equipment,equal emphasis on monitoring and prediction,and data fusion and machine learning.
Author 肖亚子
孙清峰
谢群勇
陈晓斌
梁为群
李守雷
AuthorAffiliation 中国电建集团中南勘测设计研究院有限公司,湖南长沙 410014%中南大学土木工程学院,湖南长沙 410075
AuthorAffiliation_xml – name: 中国电建集团中南勘测设计研究院有限公司,湖南长沙 410014%中南大学土木工程学院,湖南长沙 410075
Author_FL CHEN Xiaobin
XIE Qunyong
SUN Qingfeng
XIAO Yazi
LI Shoulei
LIANG Weiqun
Author_FL_xml – sequence: 1
  fullname: LI Shoulei
– sequence: 2
  fullname: LIANG Weiqun
– sequence: 3
  fullname: CHEN Xiaobin
– sequence: 4
  fullname: XIE Qunyong
– sequence: 5
  fullname: XIAO Yazi
– sequence: 6
  fullname: SUN Qingfeng
Author_xml – sequence: 1
  fullname: 李守雷
– sequence: 2
  fullname: 梁为群
– sequence: 3
  fullname: 陈晓斌
– sequence: 4
  fullname: 谢群勇
– sequence: 5
  fullname: 肖亚子
– sequence: 6
  fullname: 孙清峰
BookMark eNrjYmDJy89LZWCQMTTQMzQyNDbRz9JLqarMLtEzMjAy0TMwBCIDFgZOAxNLU11TY2NDDgbe4uLMJAMDAyNzQxNTM04G46fz-57uaHo6Z8OTHd3PV-56OX3L03WdT1tXPJ898dnW7ic7-l4uanmxdtmznvZnC9qfL5jyfOU2HgbWtMSc4lReKM3NEOrmGuLsoevj7-7p7OijW2xoYGioa5FkaZSalmyanJxkaGRsYpFimZZqmGZkYZpobmmYbJFomZRqaGphaZmclmScaGRhkJRoaW5unmppkpScZAl0ojE3gxrE3PLEvLTEvPT4rPzSojygjfFgT4L8aACyyRgAYcZbdA
ClassificationCodes U231
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12134/j.dzykt.2024.01.010
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Safety Monitoring and Early Warning Indexes of Urban Underground Space
EndPage 104
ExternalDocumentID dzykt202401011
GrantInformation_xml – fundername: (中国电建集团中南勘测设计研究院有限公司科研课题); (国家自然科学基金)
  funderid: (中国电建集团中南勘测设计研究院有限公司科研课题); (国家自然科学基金)
GroupedDBID -01
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1011-8b92efc5ccb12348d9fe1f285a791c8a9be15899cfb3a280ba9777e94bcb90003
ISSN 0495-5331
IngestDate Thu May 29 04:05:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords underground engineering
地下工程
监测指标
安全监测
safety monitoring
预警分级
趋势预测
early warning and classification
monitoring indicators
trend prediction
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1011-8b92efc5ccb12348d9fe1f285a791c8a9be15899cfb3a280ba9777e94bcb90003
PageCount 10
ParticipantIDs wanfang_journals_dzykt202401011
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 地质与勘探
PublicationTitle_FL Geology and Exploration
PublicationYear 2024
Publisher 中国电建集团中南勘测设计研究院有限公司,湖南长沙 410014%中南大学土木工程学院,湖南长沙 410075
Publisher_xml – name: 中国电建集团中南勘测设计研究院有限公司,湖南长沙 410014%中南大学土木工程学院,湖南长沙 410075
SSID ssib000271456
ssib036433830
ssj0002912125
ssib013937500
ssib000862192
ssib051371126
Score 2.3401601
Snippet U231;...
SourceID wanfang
SourceType Aggregation Database
StartPage 95
Title 城市地下空间安全监测与预警指标研究
URI https://d.wanfangdata.com.cn/periodical/dzykt202401011
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NixMxFB_WevEiiorf7sGcZHSSSSbJzZl2yiLoaRf2tnS-FIQKbj3YoyiLrCwIggcFFw_iHhQPKsW_Z9u6_4XvZTLTKVvQ9VJe0_fxe--1yUs6SRznusyZ9niauYplvst7OfzmMsFdPyt4Bj1mkJmJ4t17wcoav7Mu1pdat5u7SwbJzXS4cF_J_2QV2iCvuEv2CJmtlUID0JBfeIUMw-s_5ZjEguguUTESkSKKmZY2iTwSc9MSkViSUJMoJLEmWpKII08YE6WRUEAr5NER0ZTEAYmEkSrFY5QKGVEgpUjYIWGAPKpNlEQi9AwhkdC8shU0S94GJIXW0Vyt3NjSyuiMwVCVf2zQHcuCYJWBH5FINlkQGbXq0ENwD7TwGQvIaCMcIKF9QyD-GYtCaKCoErag7ABtF0TYbCnUmoNYoGOAqGPCxzFwmIaoijXoCCwPqm9IqQ5moum8DbpCXwFFSYT0cGStS6gwwLBiFk2L9qp0tg3RRXOsbZRr9HlmF94Czq75iIHsDY5HZHHCxGKUEJOwJMr8m3zqrkWA-QR1gE8YlOWXrmau4B4BSnnJjR2eYGrtimq_nR1Ly7sh5vqMcmAsb1K1JZa9cfrQ6I2nC5rhOxs-fYgPOjNuztS1Dz7Pn4tueJAFT0mkx5zjTEoqGosq9n91yucOYAxgiK4LeorHQYrZAZU-1Oe-mk2oBfUl7rGrV22ZBpDmJufafbsfF7HfWoDcbAbsF73-_UbdunrKOWknnMth2XucdpaGD844_vjDznj0bPz-2_5oe7r36-Dt9_HXl-MXn6fvXk9-bO-Pdg4-Pv_95dPk1dZkd2u6-2a69_Oss9aNV9srrr0-xd3EiLgq0SwvUpGmCZSnXGW6yGnBlOhJTVPV00lOhdI6LRK_x5SX9GAuKHPNkzTBq4T9c06r_6ifn3eWOUQtFVRSmQjOC6xMJBOJYAX1csbTC8416-SG7R43N-bzc_GvHJecE0iXy5uXndbg8ZP8ChT8g-SqyekfwdqwYw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%8E%E5%B8%82%E5%9C%B0%E4%B8%8B%E7%A9%BA%E9%97%B4%E5%AE%89%E5%85%A8%E7%9B%91%E6%B5%8B%E4%B8%8E%E9%A2%84%E8%AD%A6%E6%8C%87%E6%A0%87%E7%A0%94%E7%A9%B6&rft.jtitle=%E5%9C%B0%E8%B4%A8%E4%B8%8E%E5%8B%98%E6%8E%A2&rft.au=%E6%9D%8E%E5%AE%88%E9%9B%B7&rft.au=%E6%A2%81%E4%B8%BA%E7%BE%A4&rft.au=%E9%99%88%E6%99%93%E6%96%8C&rft.au=%E8%B0%A2%E7%BE%A4%E5%8B%87&rft.date=2024&rft.pub=%E4%B8%AD%E5%9B%BD%E7%94%B5%E5%BB%BA%E9%9B%86%E5%9B%A2%E4%B8%AD%E5%8D%97%E5%8B%98%E6%B5%8B%E8%AE%BE%E8%AE%A1%E7%A0%94%E7%A9%B6%E9%99%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%B9%96%E5%8D%97%E9%95%BF%E6%B2%99+410014%25%E4%B8%AD%E5%8D%97%E5%A4%A7%E5%AD%A6%E5%9C%9F%E6%9C%A8%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8D%97%E9%95%BF%E6%B2%99+410075&rft.issn=0495-5331&rft.volume=60&rft.issue=1&rft.spage=95&rft.epage=104&rft_id=info:doi/10.12134%2Fj.dzykt.2024.01.010&rft.externalDocID=dzykt202401011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzykt%2Fdzykt.jpg