多模态遥感基础大模型:研究现状与未来展望
P237; 遥感对地观测能力的稳步提升为遥感基础大模型的涌现和发展奠定了数据基础.针对不同数据及任务类型,设计不同的深度网络骨架及优化方法必将浪费大量人力物力.为了解决上述问题,国内外研究学者转入遥感基础大模型研究,并提出了大量优秀统一模型.为提高遥感基础大模型的泛化性和可解释性,引入泛在的地学知识被认为是一项关键技术.目前,已有相关工作在遥感基础大模型的结构设计或预训练方法中挖掘或整合了地学知识,但尚无文献系统性阐述和总结地学知识引导的遥感基础大模型的研究现状.因此,本文首先对大规模遥感基础模型预训练数据集进行了归纳和总结,并分类回顾了遥感基础大模型的研究进展;然后,介绍了地学知识引导的遥感...
Saved in:
Published in | 测绘学报 Vol. 53; no. 10; pp. 1942 - 1954 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
武汉大学遥感信息工程学院,湖北武汉 430079%蚂蚁集团,浙江 杭州 310013
26.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | P237; 遥感对地观测能力的稳步提升为遥感基础大模型的涌现和发展奠定了数据基础.针对不同数据及任务类型,设计不同的深度网络骨架及优化方法必将浪费大量人力物力.为了解决上述问题,国内外研究学者转入遥感基础大模型研究,并提出了大量优秀统一模型.为提高遥感基础大模型的泛化性和可解释性,引入泛在的地学知识被认为是一项关键技术.目前,已有相关工作在遥感基础大模型的结构设计或预训练方法中挖掘或整合了地学知识,但尚无文献系统性阐述和总结地学知识引导的遥感基础大模型的研究现状.因此,本文首先对大规模遥感基础模型预训练数据集进行了归纳和总结,并分类回顾了遥感基础大模型的研究进展;然后,介绍了地学知识引导的遥感影像智能解译算法以及面向遥感基础大模型的地学知识挖掘与利用进展;最后,针对该领域仍然面临的挑战提出了几点未来研究展望,旨在为遥感基础大模型的未来研究提供探索方向参考. |
---|---|
AbstractList | P237; 遥感对地观测能力的稳步提升为遥感基础大模型的涌现和发展奠定了数据基础.针对不同数据及任务类型,设计不同的深度网络骨架及优化方法必将浪费大量人力物力.为了解决上述问题,国内外研究学者转入遥感基础大模型研究,并提出了大量优秀统一模型.为提高遥感基础大模型的泛化性和可解释性,引入泛在的地学知识被认为是一项关键技术.目前,已有相关工作在遥感基础大模型的结构设计或预训练方法中挖掘或整合了地学知识,但尚无文献系统性阐述和总结地学知识引导的遥感基础大模型的研究现状.因此,本文首先对大规模遥感基础模型预训练数据集进行了归纳和总结,并分类回顾了遥感基础大模型的研究进展;然后,介绍了地学知识引导的遥感影像智能解译算法以及面向遥感基础大模型的地学知识挖掘与利用进展;最后,针对该领域仍然面临的挑战提出了几点未来研究展望,旨在为遥感基础大模型的未来研究提供探索方向参考. |
Abstract_FL | The increasing remote sensing capabilities for Earth observation have eased the access to abundant data and enabled the emergence and development of remote sensing foundation models(RSFMs).Designing distinct deep neural networks and optimizing for different data and task types require substantial development efforts and prohibitively high computational re-sources.In order to address these issues,researchers in the remote sensing field have shifted their focus to the study of RSFMs and presented many dedicated designed unified models.To enhance the generalizability and interpretability of RSFMs,the inte-gration of extensive geographic knowledge has been recognized as a pivotal/key approach.While existing works have explored or incorporated geographic knowledge into the architecture design or pre-training methods of RSFMs,there lacks of a compre-hensive survey to review the current status of geographic knowledge-guided RSFMs.Therefore,this paper starts with summa-rizing and categorizing large-scale pre-training datasets and then provides an overview of the research progress in this field.Subsequently,we introduce intelligent interpretation algorithms for remote sensing imagery guided by geographic knowledge,along with advancements in the exploration and utilization of geographic knowledge specifically tailored for RSFMs.Finally,several future research prospects are outlined to tackle the persisting challenges in this field,aiming to shed light on future in-vestigations into RSFMs. |
Author | 张永军 陈景东 王剑 杨铭 郭昕 党博 李彦胜 武康 |
AuthorAffiliation | 武汉大学遥感信息工程学院,湖北武汉 430079%蚂蚁集团,浙江 杭州 310013 |
AuthorAffiliation_xml | – name: 武汉大学遥感信息工程学院,湖北武汉 430079%蚂蚁集团,浙江 杭州 310013 |
Author_FL | WU Kang GUO Xin LI Yansheng CHEN Jing-dong YANG Ming DANG Bo WANG Jian ZHANG Yongjun |
Author_FL_xml | – sequence: 1 fullname: ZHANG Yongjun – sequence: 2 fullname: LI Yansheng – sequence: 3 fullname: DANG Bo – sequence: 4 fullname: WU Kang – sequence: 5 fullname: GUO Xin – sequence: 6 fullname: WANG Jian – sequence: 7 fullname: CHEN Jing-dong – sequence: 8 fullname: YANG Ming |
Author_xml | – sequence: 1 fullname: 张永军 – sequence: 2 fullname: 李彦胜 – sequence: 3 fullname: 党博 – sequence: 4 fullname: 武康 – sequence: 5 fullname: 郭昕 – sequence: 6 fullname: 王剑 – sequence: 7 fullname: 陈景东 – sequence: 8 fullname: 杨铭 |
BookMark | eNrjYmDJy89LZWCQNTTQMzS0NDHXz9JzdHcO1jMyMDIBEwYGhpYsDJyGQFrX0NTSlIOBt7g4M8nAwNTE2NzU2JKTwerpklnPVix81tD4snHps5b5T-fver6w4emS5UDBp_O6rZ4vmPJ85bbnfRued217sqPv2ZxVz-Yufbpx6rM5s3kYWNMSc4pTeaE0N0Oom2uIs4euj7-7p7Ojj24x0F5LXePUJCPjJCNDMwsDiyQDSzPDJFOjVIO0NKMUcyMLgzQz05RUC8O0xJTEpBSgmIFFolmSsYlRSoplWrK5sXmqpTE3gyrE3PLEvLTEvPT4rPzSojygjfHJGRVJIG8C7TGwNAYAOqZe3w |
ClassificationCodes | P237 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11947/j.AGCS.2024.20240019 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
DocumentTitle_FL | Multi-modal remote sensing large foundation models:current research status and future prospect |
EndPage | 1954 |
ExternalDocumentID | chxb202410009 |
GroupedDBID | -01 2B. 4A8 5VS 5XA 5XB 7X2 92E 92I 93N ABJNI ACGFS AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI BKSAR CCEZO CCPQU CCVFK CW9 HCIFZ IPNFZ M0K M7P OK1 P2P PATMY PCBAR PHGZM PHGZT PIMPY PMFND PSX PYCSY RIG TCJ TGP U1G U5K |
ID | FETCH-LOGICAL-s1009-3eb23b216808b0961b52e0ff2d7280f65de81fadabdf2d08a6b342dd9fc737e93 |
ISSN | 1001-1595 |
IngestDate | Thu May 29 04:11:08 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Keywords | 预训练数据集 遥感智能解译 geographic knowledge remote sensing foundation models 遥感基础大模型 pre-training dataset 地学知识 remote sensing intelligent interpretation |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1009-3eb23b216808b0961b52e0ff2d7280f65de81fadabdf2d08a6b342dd9fc737e93 |
PageCount | 13 |
ParticipantIDs | wanfang_journals_chxb202410009 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-26 |
PublicationDateYYYYMMDD | 2024-11-26 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | 测绘学报 |
PublicationTitle_FL | Acta Geodaetica et Cartographica Sinica |
PublicationYear | 2024 |
Publisher | 武汉大学遥感信息工程学院,湖北武汉 430079%蚂蚁集团,浙江 杭州 310013 |
Publisher_xml | – name: 武汉大学遥感信息工程学院,湖北武汉 430079%蚂蚁集团,浙江 杭州 310013 |
SSID | ssib005437539 ssib038074662 ssib051373695 ssib002263888 ssib000862384 ssj0058465 |
Score | 2.439258 |
Snippet | P237;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1942 |
Title | 多模态遥感基础大模型:研究现状与未来展望 |
URI | https://d.wanfangdata.com.cn/periodical/chxb202410009 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0GrLhQviqfKqcsBcqpR92Wv3ZqcbKhBIiFbqrVpnd-mFVCKpBD21EieQeoILFEqlVjxOcKkQX8FHkET8BTPeTWrUSjwu1mR2PDOeWccz6xch12LIOXgKkVvqpUU9ErJVN1ym9TgI_MKIKPNy3Dt85y6fX4xuLbGlsfHvzqqlta6Zaa0fu6_kf7wKOPAr7pL9B8-OmAICYPAvlOBhKP_KxzRhVEVUKppwqgRVPgLCg_CQJhJLxSwGaJpIDKUG4hgpgaysrmKnOtAkVGjQwJJ5VEYWkFRzBERCtWcBZTER1QKRwEE2qLKayDkrl1HtU8mqR1K7cTAiNUNBwEprKoVVBipyq7ACDsN3wXJqoC5YyUOBgBF8yNKSWKmoB9CWXECtEAS7XASztgJgDgC3ciWZoXl07H4KCSLcE1jut7cvr0POsYVCOnYcteGo9cFSzaGH4JH1h44tTYzWR1s41aWkKoAOYKXAT6udADvGRxWYjkIIwiQNGDYbmiiCIWBfBKnRXOhb7TBlKKNkIZvTQ8fNVXrJZBpnZcotvNWwhQvjIDBl7rjGQrf_es4o5cvyRLMq4sFD_44fTWUU2-FU3Wzcn0GL2wLTgsPwYbSos7Xy2OBjnDGS4-REAIkb3ily-54b8EO4LdyAEv7_nQPzWBRC_jwKsPE2hIgfHmjJ_DAOuRwluBg9M7ueoWp_tUcPFb9xnNp2a167SNsPnChy4TQ5VaV_NVX25TNkbH3lLJlUHZyQWn34pHa9ZuHye2PnHJnt7b3qf9jtb2z-3NzvP93p7Xwb7G709t4Dsvf2-ezg3YvBx4PB1ufBs4MfX7f625_6b_Z7X172t1-fJ4vNZKExX6-uO6l3fJyiDHMThCbw8TIcgzcxGRbkXlEEGV4hV3CW5cIv0iw1GeA8kXITRkGWyaIVh3Euwwtkor3azidJzUBtyJuyHD-Y-H5qTAtC9YLHMJoHkANeJFOVGZarv7PO8m_uu_Qngsvk5GEPvEImuo_W8qsQnnfNlPX4L-5EpKA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%9A%E6%A8%A1%E6%80%81%E9%81%A5%E6%84%9F%E5%9F%BA%E7%A1%80%E5%A4%A7%E6%A8%A1%E5%9E%8B%3A%E7%A0%94%E7%A9%B6%E7%8E%B0%E7%8A%B6%E4%B8%8E%E6%9C%AA%E6%9D%A5%E5%B1%95%E6%9C%9B&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E6%B0%B8%E5%86%9B&rft.au=%E6%9D%8E%E5%BD%A6%E8%83%9C&rft.au=%E5%85%9A%E5%8D%9A&rft.au=%E6%AD%A6%E5%BA%B7&rft.date=2024-11-26&rft.pub=%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E9%81%A5%E6%84%9F%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430079%25%E8%9A%82%E8%9A%81%E9%9B%86%E5%9B%A2%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310013&rft.issn=1001-1595&rft.volume=53&rft.issue=10&rft.spage=1942&rft.epage=1954&rft_id=info:doi/10.11947%2Fj.AGCS.2024.20240019&rft.externalDocID=chxb202410009 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg |