基于散射点拓扑和双分支卷积神经网络的SAR图像小样本舰船分类
TN957.52; 随着合成孔径雷达(SAR)图像在舰船检测和识别领域的广泛应用,准确而高效地进行舰船分类已经成为一个亟待解决的问题.在小样本学习场景下,一般的方法面临着泛化能力不足的问题,因此该文引入了额外的信息和特征,旨在增加模型对目标的理解和泛化能力.该文通过散射关键点构建拓扑结构以表征舰船目标的结构和形状特征,并计算拓扑结构的拉普拉斯矩阵,将散射点之间的拓扑关系转化为矩阵形式,最后将SAR图像和拉普拉斯矩阵分别作为双分支网络的输入进行特征提取.在网络结构方面,该文设计了一个由两个独立的卷积分支组成的双分支卷积神经网络,分别负责处理视觉特征和拓扑特征,并用两个交叉融合注意力模块分别对两个...
Saved in:
Published in | 雷达学报 Vol. 13; no. 2; pp. 411 - 427 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
苏州空天信息研究院 苏州 215128
2024
苏州空天信息研究院 苏州 215128%苏州市微波成像处理与应用技术重点实验室 苏州 215128 中国科学院大学电子电气与通信工程学院 北京 100049%苏州市微波成像处理与应用技术重点实验室 苏州 215128 中国科学院大学 北京 100049 苏州市微波成像处理与应用技术重点实验室 苏州 215128 中国科学院空天信息创新研究院 北京 100094 |
Subjects | |
Online Access | Get full text |
ISSN | 2095-283X |
DOI | 10.12000/JR23172 |
Cover
Loading…
Abstract | TN957.52; 随着合成孔径雷达(SAR)图像在舰船检测和识别领域的广泛应用,准确而高效地进行舰船分类已经成为一个亟待解决的问题.在小样本学习场景下,一般的方法面临着泛化能力不足的问题,因此该文引入了额外的信息和特征,旨在增加模型对目标的理解和泛化能力.该文通过散射关键点构建拓扑结构以表征舰船目标的结构和形状特征,并计算拓扑结构的拉普拉斯矩阵,将散射点之间的拓扑关系转化为矩阵形式,最后将SAR图像和拉普拉斯矩阵分别作为双分支网络的输入进行特征提取.在网络结构方面,该文设计了一个由两个独立的卷积分支组成的双分支卷积神经网络,分别负责处理视觉特征和拓扑特征,并用两个交叉融合注意力模块分别对两个分支的特征进行交互融合.该方法有效地将目标散射点拓扑关系与网络的自动学习过程相结合,从而增强模型的泛化能力并提高分类精度.实验结果表明,在OpenSARShip数据集上,所提方法在1-shot和5-shot任务的平均准确率分别为53.80%和73.00%.而在FUSAR-Ship数据集上,所提方法分别取得了54.44%和71.36%的平均准确率.所提方法在1-shot和5-shot的设置下相比基础方法准确率均提升超过15%,证明了散射点拓扑的应用对SAR图像小样本舰船分类的有效性. |
---|---|
AbstractList | TN957.52; 随着合成孔径雷达(SAR)图像在舰船检测和识别领域的广泛应用,准确而高效地进行舰船分类已经成为一个亟待解决的问题.在小样本学习场景下,一般的方法面临着泛化能力不足的问题,因此该文引入了额外的信息和特征,旨在增加模型对目标的理解和泛化能力.该文通过散射关键点构建拓扑结构以表征舰船目标的结构和形状特征,并计算拓扑结构的拉普拉斯矩阵,将散射点之间的拓扑关系转化为矩阵形式,最后将SAR图像和拉普拉斯矩阵分别作为双分支网络的输入进行特征提取.在网络结构方面,该文设计了一个由两个独立的卷积分支组成的双分支卷积神经网络,分别负责处理视觉特征和拓扑特征,并用两个交叉融合注意力模块分别对两个分支的特征进行交互融合.该方法有效地将目标散射点拓扑关系与网络的自动学习过程相结合,从而增强模型的泛化能力并提高分类精度.实验结果表明,在OpenSARShip数据集上,所提方法在1-shot和5-shot任务的平均准确率分别为53.80%和73.00%.而在FUSAR-Ship数据集上,所提方法分别取得了54.44%和71.36%的平均准确率.所提方法在1-shot和5-shot的设置下相比基础方法准确率均提升超过15%,证明了散射点拓扑的应用对SAR图像小样本舰船分类的有效性. |
Abstract_FL | With the widespread application of Synthetic Aperture Radar(SAR)images in ship detection and recognition,accurate and efficient ship classification has become an urgent issue that needs to be addressed.In few-shot learning,conventional methods often suffer from limited generalization capabilities.Herein,additional information and features are introduced to enhance the understanding and generalization capabilities of the model for targets.To address this challenge,this study proposes a few-shot ship classification method for SAR images based on scattering point topology and Dual-Branch Convolutional Neural Network(DB-CNN).First,a topology structure was constructed using scattering key points to characterize the structural and shape features of ship targets.Second,the Laplacian matrix of the topology structure was calculated to transform the topological relations between scattering points into a matrix form.Finally,the original image and Laplacian matrix were used as inputs to the DB-CNN for feature extraction.Regarding network architecture,a DB-CNN comprising two independent convolution branches was designed.These branches were tasked with processing visual and topological features,employing two cross-fusion attention modules to collaboratively merge features from both branches.This approach effectively integrates the topological relations of target scattering points into the automated learning process of the network,enhancing the generalization capabilities and enhancing the classification accuracy of the model.Experimental results demonstrated that the proposed approach obtained average accuracies of 53.80%and 73.00%in 1-shot and 5-shot tasks,respectively,on the OpenSARShip dataset.Similarly,on the FUSAR-Ship dataset,it achieved average accuracies of 54.44%and 71.36%in 1-shot and 5-shot tasks,respectively.In the case of both 1-shot and 5-shot tasks,the proposed approach outperformed the baseline by>15%in terms of accuracy,underscoring the effectiveness of incorporating scattering point topology in few-shot ship classification of SAR images. |
Author | 卢东东 仇晓兰 李飞 张翼鹏 |
AuthorAffiliation | 苏州市微波成像处理与应用技术重点实验室 苏州 215128;苏州空天信息研究院 苏州 215128;中国科学院空天信息创新研究院 北京 100094;中国科学院大学 北京 100049;中国科学院大学电子电气与通信工程学院 北京 100049%苏州市微波成像处理与应用技术重点实验室 苏州 215128;苏州空天信息研究院 苏州 215128%苏州市微波成像处理与应用技术重点实验室 苏州 215128;苏州空天信息研究院 苏州 215128;中国科学院空天信息创新研究院 北京 100094;中国科学院大学 北京 100049 |
AuthorAffiliation_xml | – name: 苏州市微波成像处理与应用技术重点实验室 苏州 215128;苏州空天信息研究院 苏州 215128;中国科学院空天信息创新研究院 北京 100094;中国科学院大学 北京 100049;中国科学院大学电子电气与通信工程学院 北京 100049%苏州市微波成像处理与应用技术重点实验室 苏州 215128;苏州空天信息研究院 苏州 215128%苏州市微波成像处理与应用技术重点实验室 苏州 215128;苏州空天信息研究院 苏州 215128;中国科学院空天信息创新研究院 北京 100094;中国科学院大学 北京 100049 |
Author_FL | LI Fei ZHANG Yipeng LU Dongdong QIU Xiaolan |
Author_FL_xml | – sequence: 1 fullname: ZHANG Yipeng – sequence: 2 fullname: LU Dongdong – sequence: 3 fullname: QIU Xiaolan – sequence: 4 fullname: LI Fei |
Author_xml | – sequence: 1 fullname: 张翼鹏 – sequence: 2 fullname: 卢东东 – sequence: 3 fullname: 仇晓兰 – sequence: 4 fullname: 李飞 |
BookMark | eNotkMtKw0AYRmdRwVoLvoTL6D-XZJJlKV4pCLWCu5JJMqKUFAyiay1SsRrqZaNFBRE3QuOqtEGfxsn0MQzo6ludc-CbQ4WwHQYILWBYwgQAljfrhGJOCqhIwDENYtPdWVSOon0B1CKmBZQVUUM9T34m19n9q0o6-nScXd5mF31101NxT3XPs7uhuhrp96F-e9JprL_6Oh3oh852pa4ev9VZrJI4exllg49pN5l2xzmiP9N5NCPdVhSU_7eEdlZXGtV1o7a1tlGt1IwIA9iGaxHucE8I1-eSSceTzDPBow6VVJhMMmwxwYNASJuCh5kVMNdnTHKfmx7BlJbQ4p_32A2lG-41D9pHh2FebLb8E0GAMMifsOkvps9t5g |
ClassificationCodes | TN957.52 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12000/JR23172 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Few-shot Ship Classification of SAR Images via Scattering Point Topology and Dual-branch Convolutional Neural Network |
EndPage | 427 |
ExternalDocumentID | ldxb202402008 |
GroupedDBID | -0Y 2B. 4A8 5VS 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ GROUPED_DOAJ IPNFZ KQ8 PSX RIG TCJ TGT U1G U5S |
ID | FETCH-LOGICAL-s1008-a62797cbbad7f4f9cf4c50c393f3b54f4164b7eebf830c146e4ad44f7d75c2133 |
ISSN | 2095-283X |
IngestDate | Thu May 29 04:01:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 双分支卷积神经网络 Dual-Branch Convolutional Neural Network(DB-CNN) 合成孔径雷达(SAR) Scattering point topology 散射点拓扑 Synthetic Aperture Radar(SAR) 小样本学习 Few-shot learning Ship classification 舰船分类 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1008-a62797cbbad7f4f9cf4c50c393f3b54f4164b7eebf830c146e4ad44f7d75c2133 |
PageCount | 17 |
ParticipantIDs | wanfang_journals_ldxb202402008 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 雷达学报 |
PublicationTitle_FL | Journal of Radars |
PublicationYear | 2024 |
Publisher | 苏州空天信息研究院 苏州 215128 苏州空天信息研究院 苏州 215128%苏州市微波成像处理与应用技术重点实验室 苏州 215128 中国科学院大学电子电气与通信工程学院 北京 100049%苏州市微波成像处理与应用技术重点实验室 苏州 215128 中国科学院大学 北京 100049 苏州市微波成像处理与应用技术重点实验室 苏州 215128 中国科学院空天信息创新研究院 北京 100094 |
Publisher_xml | – name: 中国科学院空天信息创新研究院 北京 100094 – name: 中国科学院大学 北京 100049 – name: 中国科学院大学电子电气与通信工程学院 北京 100049%苏州市微波成像处理与应用技术重点实验室 苏州 215128 – name: 苏州市微波成像处理与应用技术重点实验室 苏州 215128 – name: 苏州空天信息研究院 苏州 215128 – name: 苏州空天信息研究院 苏州 215128%苏州市微波成像处理与应用技术重点实验室 苏州 215128 |
SSID | ssib036256034 ssj0001853618 ssib023646539 ssib036438606 ssib051376368 ssib038075146 ssib058814069 ssib011592811 ssib054421839 |
Score | 2.3478155 |
Snippet | TN957.52;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 411 |
Title | 基于散射点拓扑和双分支卷积神经网络的SAR图像小样本舰船分类 |
URI | https://d.wanfangdata.com.cn/periodical/ldxb202402008 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAMNR60YP4iZ_Fg3sq0ZfsJrt7TN5LKIIeagu9lSQv0YM8wbYgPWopFauP-nHRooKIF6H1VNqiv8a89Gc4M8lrUhX8uCyT3Z2ZnZkkM7vJzhrGlTiS3E14ZopuEplCJakZiZibwlUwHbIyN01wv_ONm-7EtLg-48yMHFpu_LW0MB9fTRZ_u6_kf6wKdWBX3CX7D5bdJwoVAIN9oQQLQ_lXNmaBw3TIfI8FAksVsMBl2mEexya_xZRggWTKZr7GJuUzzQnQTFuEbjPVRkCFQ0Ax5RIdwbyQajrMl0jHk1QDJSAGCPg-IiLQIYJUo9sIaBiPuOVNEhef-QGR4tS_HFuIXLwWEXcRywNEhQOA1grQjSEBcQvoN-NpFmgiLrE_sCi5eB3mkQjKg6EO7yli20aGSClEGLCBgwqbXUBazyaFKpKkAuougqQux6xJn4CEEtVdoKVD1tBoCh0011bselWVhPSHGpGVTj1NFgUxBMLIL2SeRfJYQwO00DxVZ5e0AKzs8V8pjlO01XA-NoS7JoR7Mwe8E288hXbD1YjKSZVRiygzLPziEHEnFh72PQlxfHlG0k_pxe92H8QoesumPfOHbSktp7E0Ae9lmDRoW9V-AM8cwIzGw2uIgSBurtMMQjNXbv31Hs80cBo5ihwLvVo9zXWEoEB9_1phGrby4PtyrRRiSpeW6vdVVOWRRvGuVcLRtrteFvVuNyLEqePGsWpqd9krn9MTxsjinZPG0UbCz1PGVP5u5_vOs8GrD_nmUvFwe_DkxeDxWv58Ne-v5ivLg5cb-dOt4tNG8fFtsdsvvq4Vu-vF6yV4ivI33_JH_XyzP3i_NVj_vLeyubeyDSjFl93TxnQYTLUnzOpcE3MOU2mZkWtLLZM4jroyE5lOMpE4rYRrnvHYERnMkUQs0zTOFG8loLhURF0hMtmVTmJbnJ8xRnv3eulZ_DExghdq5KouZtWyY-XaKpIZGADPhdDZOWOs0sls9d6amz1g8fN_6nDBOIJwuep40Ridv7-QXoI4fD4eo5vkB4LorHE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%95%A3%E5%B0%84%E7%82%B9%E6%8B%93%E6%89%91%E5%92%8C%E5%8F%8C%E5%88%86%E6%94%AF%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84SAR%E5%9B%BE%E5%83%8F%E5%B0%8F%E6%A0%B7%E6%9C%AC%E8%88%B0%E8%88%B9%E5%88%86%E7%B1%BB&rft.jtitle=%E9%9B%B7%E8%BE%BE%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E7%BF%BC%E9%B9%8F&rft.au=%E5%8D%A2%E4%B8%9C%E4%B8%9C&rft.au=%E4%BB%87%E6%99%93%E5%85%B0&rft.au=%E6%9D%8E%E9%A3%9E&rft.date=2024&rft.pub=%E8%8B%8F%E5%B7%9E%E7%A9%BA%E5%A4%A9%E4%BF%A1%E6%81%AF%E7%A0%94%E7%A9%B6%E9%99%A2+%E8%8B%8F%E5%B7%9E+215128&rft.issn=2095-283X&rft.volume=13&rft.issue=2&rft.spage=411&rft.epage=427&rft_id=info:doi/10.12000%2FJR23172&rft.externalDocID=ldxb202402008 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fldxb%2Fldxb.jpg |