基于t-SNE降维方法的滚动轴承剩余寿命预测

TH17; 由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法.首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(Ensemble Empirical Mode Decompositiont Singular Value Decomposition,EEMD+SVD)得到数十维特征,加上剩余寿命预测常用的诸如峭度、均值等有效特征,利用决策树筛选出 15 维特征;将所筛选特征进行双指数拟合并通过t分布随机近邻嵌入(t-distributed Stochastic Neighbo...

Full description

Saved in:
Bibliographic Details
Published in机械强度 Vol. 46; no. 4; pp. 969 - 976
Main Authors 钟建华, 黄聪, 钟舜聪, 肖顺根
Format Journal Article
LanguageChinese
Published 福州大学 机械工程及自动化学院,福州 350116 2024
福建省太赫兹功能器件与智能传感重点实验室,福州 350108%宁德师范学院 信息工程学院,宁德 352100
Subjects
Online AccessGet full text
ISSN1001-9669
DOI10.16579/j.issn.1001.9669.2024.04.028

Cover

Abstract TH17; 由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法.首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(Ensemble Empirical Mode Decompositiont Singular Value Decomposition,EEMD+SVD)得到数十维特征,加上剩余寿命预测常用的诸如峭度、均值等有效特征,利用决策树筛选出 15 维特征;将所筛选特征进行双指数拟合并通过t分布随机近邻嵌入(t-distributed Stochastic Neighbor Embedding,t-SNE)将退化信号降维成线性趋势.线性退化趋势在预测上相比于指数趋势有更好的泛化性,同时预测准确度相比于指数模型支持向量回归(Support Vector Regression,SVR)和深度信念网络(Deep Belief Network,DBN)都有较高的提升.
AbstractList TH17; 由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法.首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(Ensemble Empirical Mode Decompositiont Singular Value Decomposition,EEMD+SVD)得到数十维特征,加上剩余寿命预测常用的诸如峭度、均值等有效特征,利用决策树筛选出 15 维特征;将所筛选特征进行双指数拟合并通过t分布随机近邻嵌入(t-distributed Stochastic Neighbor Embedding,t-SNE)将退化信号降维成线性趋势.线性退化趋势在预测上相比于指数趋势有更好的泛化性,同时预测准确度相比于指数模型支持向量回归(Support Vector Regression,SVR)和深度信念网络(Deep Belief Network,DBN)都有较高的提升.
Abstract_FL Due to the limited bearing degradation data under actual working conditions,it is impossible to obtain enough degradation data to train the neural network,it is difficult to obtain good prediction results in the deep learning network,so a new fusion method was proposed.Firstly,the features of the original vibration signal was extracted,dozens of dimensional features were obtained through the ensemble empirical mode decomposition(EEMD)and the singular value decomposition(SVD),and the effective features such as kurtosis and mean value commonly used in remaining useful life prediction were added,then the decision tree to filter out 15-dimensional features was used the data was obtained by double exponential model fitting and the degraded signal was reduced to a linear trend through t-SNE.The linear degradation trend has better generalization in prediction than the exponential trend,and the prediction accuracy is superior to support veotor regression(SVR)and deep belief network(DBN)model.
Author 肖顺根
钟建华
钟舜聪
黄聪
AuthorAffiliation 福州大学 机械工程及自动化学院,福州 350116;福建省太赫兹功能器件与智能传感重点实验室,福州 350108%宁德师范学院 信息工程学院,宁德 352100
AuthorAffiliation_xml – name: 福州大学 机械工程及自动化学院,福州 350116;福建省太赫兹功能器件与智能传感重点实验室,福州 350108%宁德师范学院 信息工程学院,宁德 352100
Author_FL XIAO ShunGen
ZHONG JianHua
HUANG Cong
ZHONG ShunCong
Author_FL_xml – sequence: 1
  fullname: ZHONG JianHua
– sequence: 2
  fullname: HUANG Cong
– sequence: 3
  fullname: ZHONG ShunCong
– sequence: 4
  fullname: XIAO ShunGen
Author_xml – sequence: 1
  fullname: 钟建华
– sequence: 2
  fullname: 黄聪
– sequence: 3
  fullname: 钟舜聪
– sequence: 4
  fullname: 肖顺根
BookMark eNotjz9LAzEAxTNUsNZ-jI4Xk1ySS0Yp9Q8UHdS5JJec9JAUjaIfoEsVBQeFdhGcdHKwDrYc_TK9q_0WXlF48Hi_4T3eBqi4nrMANDCCmLNIbqWw672DGCEMJecSEkQoRKWIqIDqigcrvg7q3nd1GTGRDPEqEPnLZD55uAyODlrL4f1iOi6ev4vPp8WoX0xH-e3bTzYuBrN88D7PhvnHLH_Mlq_94utuE6wl6szb-r_XwMlO67i5F7QPd_eb2-3Al6siiIgQDGOZWBFSSa0ijBvDNdUo5gwLbg3WyGpqQh4ry5Q1MqFxHIWMRZqTsAYaf73XyiXKnXbS3tWFKxc76c25Wf1EtHwZ_gK-RF7U
ClassificationCodes TH17
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16579/j.issn.1001.9669.2024.04.028
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL REMAINING USEFUL LIFE OF ROLLING BEARING BASED ON t-SNE
EndPage 976
ExternalDocumentID jxqd202404028
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1008-72885119fe83494ea256dd6b4b0c65186ed1b0eb4d36cae5aed9f4cc73557b623
ISSN 1001-9669
IngestDate Thu May 29 04:06:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords t-distributed stochastic neighbor embedding
Remaining useful life prediction
特征提取
双指数模型
t-SNE
Feature extraction
轴承
Double exponential model
剩余寿命预测
Bearing
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1008-72885119fe83494ea256dd6b4b0c65186ed1b0eb4d36cae5aed9f4cc73557b623
PageCount 8
ParticipantIDs wanfang_journals_jxqd202404028
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 机械强度
PublicationTitle_FL Journal of Mechanical Strength
PublicationYear 2024
Publisher 福州大学 机械工程及自动化学院,福州 350116
福建省太赫兹功能器件与智能传感重点实验室,福州 350108%宁德师范学院 信息工程学院,宁德 352100
Publisher_xml – name: 福建省太赫兹功能器件与智能传感重点实验室,福州 350108%宁德师范学院 信息工程学院,宁德 352100
– name: 福州大学 机械工程及自动化学院,福州 350116
SSID ssib001129506
ssj0039916
ssib053800445
ssib023167364
ssib051373004
ssib002264255
Score 2.3763292
Snippet TH17; 由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法.首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(Ensemble Empirical Mode Decompositiont...
SourceID wanfang
SourceType Aggregation Database
StartPage 969
Title 基于t-SNE降维方法的滚动轴承剩余寿命预测
URI https://d.wanfangdata.com.cn/periodical/jxqd202404028
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQx0EqChKBAPMUzSoGraMM-7F27XN_tKUIiDYmULlrvA0RxCO4iodRpAgKJAqSkQaKCioJQkOiUn8ldyF8w4_XdbXTh2Vi-mbE9j9v1jNceE3JXpkUIbqpwsjyNHFbA31h7MnI4Y75fwIxYmAW3B0vh4gq7v8pXp6Y7tV1L6129kG2ceq7kf6wKMLArnpL9B8uOOgUA1MG-UIKFofwrG9OEU9miKqYJw1IkXefhUkITSaWkokmTiCpFFaNJSGVIlcSKCqjkiJLQwqCABurQmYhpLGgiqGraVkJS1TIoSWNpxmli5wCJWxYlPQTCoLE_7BDoVd3vNQw0DKchkikXG6oKwrGMR0uEhn0fBUOMsiQgjUjqJIDBwQT4wjSOT2kMGIGDTpIAwEd9IMvekCkX1FNfA_HHq5-orBh0UXEEikuM_IzGkak0ATv_CxGhpVE26FUoI0gL1Yw8ALCudag0DFe2R2tG6MpvTHIwj99qqwOkdlLBbWsQVsr6rMPC2tPFalOItHSVNyKr23EmJrqQR9LMdDiCSaS1gCMsoHZM7l575P5kLvEnL57lSAFvbl9MkzN-FHm8tg5hfGjwAHn90zu4zP748LKPqROCcYzNvQCvPBj_DgRuEhjFoAEGIGbLgVXCWUKHAtz7HfvmFF27TNuPag7f8kVywUZqc3H12F0iUxuPL5PztfydV4jof9g73HtjHrrj7ddH-7uD998HX98d7WwO9nf6Lz_96O0Otg76W58Pe9v9Lwf9t73jj5uDb6-ukpVWstxYdOxVJE4Hs185kS8wNJFlITCfU5FCpJDnoWbazULuibDIPe0WmuVBmKUFT4tclizLInDnIw0hxjUy037aLq6TOV5ymWuu87xkLGUuOBg8d3VWproMpNY3yKyVe82-ajprJ-x2808Et8g5rFcLhbfJTPf5enEHXOeunjWm_gkE7ZBm
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8Et-SNE%E9%99%8D%E7%BB%B4%E6%96%B9%E6%B3%95%E7%9A%84%E6%BB%9A%E5%8A%A8%E8%BD%B4%E6%89%BF%E5%89%A9%E4%BD%99%E5%AF%BF%E5%91%BD%E9%A2%84%E6%B5%8B&rft.jtitle=%E6%9C%BA%E6%A2%B0%E5%BC%BA%E5%BA%A6&rft.au=%E9%92%9F%E5%BB%BA%E5%8D%8E&rft.au=%E9%BB%84%E8%81%AA&rft.au=%E9%92%9F%E8%88%9C%E8%81%AA&rft.au=%E8%82%96%E9%A1%BA%E6%A0%B9&rft.date=2024&rft.pub=%E7%A6%8F%E5%B7%9E%E5%A4%A7%E5%AD%A6+%E6%9C%BA%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%8F%8A%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2%2C%E7%A6%8F%E5%B7%9E+350116&rft.issn=1001-9669&rft.volume=46&rft.issue=4&rft.spage=969&rft.epage=976&rft_id=info:doi/10.16579%2Fj.issn.1001.9669.2024.04.028&rft.externalDocID=jxqd202404028
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjxqd%2Fjxqd.jpg