基于t-SNE降维方法的滚动轴承剩余寿命预测
TH17; 由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法.首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(Ensemble Empirical Mode Decompositiont Singular Value Decomposition,EEMD+SVD)得到数十维特征,加上剩余寿命预测常用的诸如峭度、均值等有效特征,利用决策树筛选出 15 维特征;将所筛选特征进行双指数拟合并通过t分布随机近邻嵌入(t-distributed Stochastic Neighbo...
Saved in:
Published in | 机械强度 Vol. 46; no. 4; pp. 969 - 976 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
福州大学 机械工程及自动化学院,福州 350116
2024
福建省太赫兹功能器件与智能传感重点实验室,福州 350108%宁德师范学院 信息工程学院,宁德 352100 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-9669 |
DOI | 10.16579/j.issn.1001.9669.2024.04.028 |
Cover
Abstract | TH17; 由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法.首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(Ensemble Empirical Mode Decompositiont Singular Value Decomposition,EEMD+SVD)得到数十维特征,加上剩余寿命预测常用的诸如峭度、均值等有效特征,利用决策树筛选出 15 维特征;将所筛选特征进行双指数拟合并通过t分布随机近邻嵌入(t-distributed Stochastic Neighbor Embedding,t-SNE)将退化信号降维成线性趋势.线性退化趋势在预测上相比于指数趋势有更好的泛化性,同时预测准确度相比于指数模型支持向量回归(Support Vector Regression,SVR)和深度信念网络(Deep Belief Network,DBN)都有较高的提升. |
---|---|
AbstractList | TH17; 由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法.首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(Ensemble Empirical Mode Decompositiont Singular Value Decomposition,EEMD+SVD)得到数十维特征,加上剩余寿命预测常用的诸如峭度、均值等有效特征,利用决策树筛选出 15 维特征;将所筛选特征进行双指数拟合并通过t分布随机近邻嵌入(t-distributed Stochastic Neighbor Embedding,t-SNE)将退化信号降维成线性趋势.线性退化趋势在预测上相比于指数趋势有更好的泛化性,同时预测准确度相比于指数模型支持向量回归(Support Vector Regression,SVR)和深度信念网络(Deep Belief Network,DBN)都有较高的提升. |
Abstract_FL | Due to the limited bearing degradation data under actual working conditions,it is impossible to obtain enough degradation data to train the neural network,it is difficult to obtain good prediction results in the deep learning network,so a new fusion method was proposed.Firstly,the features of the original vibration signal was extracted,dozens of dimensional features were obtained through the ensemble empirical mode decomposition(EEMD)and the singular value decomposition(SVD),and the effective features such as kurtosis and mean value commonly used in remaining useful life prediction were added,then the decision tree to filter out 15-dimensional features was used the data was obtained by double exponential model fitting and the degraded signal was reduced to a linear trend through t-SNE.The linear degradation trend has better generalization in prediction than the exponential trend,and the prediction accuracy is superior to support veotor regression(SVR)and deep belief network(DBN)model. |
Author | 肖顺根 钟建华 钟舜聪 黄聪 |
AuthorAffiliation | 福州大学 机械工程及自动化学院,福州 350116;福建省太赫兹功能器件与智能传感重点实验室,福州 350108%宁德师范学院 信息工程学院,宁德 352100 |
AuthorAffiliation_xml | – name: 福州大学 机械工程及自动化学院,福州 350116;福建省太赫兹功能器件与智能传感重点实验室,福州 350108%宁德师范学院 信息工程学院,宁德 352100 |
Author_FL | XIAO ShunGen ZHONG JianHua HUANG Cong ZHONG ShunCong |
Author_FL_xml | – sequence: 1 fullname: ZHONG JianHua – sequence: 2 fullname: HUANG Cong – sequence: 3 fullname: ZHONG ShunCong – sequence: 4 fullname: XIAO ShunGen |
Author_xml | – sequence: 1 fullname: 钟建华 – sequence: 2 fullname: 黄聪 – sequence: 3 fullname: 钟舜聪 – sequence: 4 fullname: 肖顺根 |
BookMark | eNotjz9LAzEAxTNUsNZ-jI4Xk1ySS0Yp9Q8UHdS5JJec9JAUjaIfoEsVBQeFdhGcdHKwDrYc_TK9q_0WXlF48Hi_4T3eBqi4nrMANDCCmLNIbqWw672DGCEMJecSEkQoRKWIqIDqigcrvg7q3nd1GTGRDPEqEPnLZD55uAyODlrL4f1iOi6ev4vPp8WoX0xH-e3bTzYuBrN88D7PhvnHLH_Mlq_94utuE6wl6szb-r_XwMlO67i5F7QPd_eb2-3Al6siiIgQDGOZWBFSSa0ijBvDNdUo5gwLbg3WyGpqQh4ry5Q1MqFxHIWMRZqTsAYaf73XyiXKnXbS3tWFKxc76c25Wf1EtHwZ_gK-RF7U |
ClassificationCodes | TH17 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16579/j.issn.1001.9669.2024.04.028 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | REMAINING USEFUL LIFE OF ROLLING BEARING BASED ON t-SNE |
EndPage | 976 |
ExternalDocumentID | jxqd202404028 |
GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 GROUPED_DOAJ PSX TCJ TGT U1G U5M |
ID | FETCH-LOGICAL-s1008-72885119fe83494ea256dd6b4b0c65186ed1b0eb4d36cae5aed9f4cc73557b623 |
ISSN | 1001-9669 |
IngestDate | Thu May 29 04:06:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | t-distributed stochastic neighbor embedding Remaining useful life prediction 特征提取 双指数模型 t-SNE Feature extraction 轴承 Double exponential model 剩余寿命预测 Bearing |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1008-72885119fe83494ea256dd6b4b0c65186ed1b0eb4d36cae5aed9f4cc73557b623 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_jxqd202404028 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 机械强度 |
PublicationTitle_FL | Journal of Mechanical Strength |
PublicationYear | 2024 |
Publisher | 福州大学 机械工程及自动化学院,福州 350116 福建省太赫兹功能器件与智能传感重点实验室,福州 350108%宁德师范学院 信息工程学院,宁德 352100 |
Publisher_xml | – name: 福建省太赫兹功能器件与智能传感重点实验室,福州 350108%宁德师范学院 信息工程学院,宁德 352100 – name: 福州大学 机械工程及自动化学院,福州 350116 |
SSID | ssib001129506 ssj0039916 ssib053800445 ssib023167364 ssib051373004 ssib002264255 |
Score | 2.3763292 |
Snippet | TH17; 由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法.首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(Ensemble Empirical Mode Decompositiont... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 969 |
Title | 基于t-SNE降维方法的滚动轴承剩余寿命预测 |
URI | https://d.wanfangdata.com.cn/periodical/jxqd202404028 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQx0EqChKBAPMUzSoGraMM-7F27XN_tKUIiDYmULlrvA0RxCO4iodRpAgKJAqSkQaKCioJQkOiUn8ldyF8w4_XdbXTh2Vi-mbE9j9v1jNceE3JXpkUIbqpwsjyNHFbA31h7MnI4Y75fwIxYmAW3B0vh4gq7v8pXp6Y7tV1L6129kG2ceq7kf6wKMLArnpL9B8uOOgUA1MG-UIKFofwrG9OEU9miKqYJw1IkXefhUkITSaWkokmTiCpFFaNJSGVIlcSKCqjkiJLQwqCABurQmYhpLGgiqGraVkJS1TIoSWNpxmli5wCJWxYlPQTCoLE_7BDoVd3vNQw0DKchkikXG6oKwrGMR0uEhn0fBUOMsiQgjUjqJIDBwQT4wjSOT2kMGIGDTpIAwEd9IMvekCkX1FNfA_HHq5-orBh0UXEEikuM_IzGkak0ATv_CxGhpVE26FUoI0gL1Yw8ALCudag0DFe2R2tG6MpvTHIwj99qqwOkdlLBbWsQVsr6rMPC2tPFalOItHSVNyKr23EmJrqQR9LMdDiCSaS1gCMsoHZM7l575P5kLvEnL57lSAFvbl9MkzN-FHm8tg5hfGjwAHn90zu4zP748LKPqROCcYzNvQCvPBj_DgRuEhjFoAEGIGbLgVXCWUKHAtz7HfvmFF27TNuPag7f8kVywUZqc3H12F0iUxuPL5PztfydV4jof9g73HtjHrrj7ddH-7uD998HX98d7WwO9nf6Lz_96O0Otg76W58Pe9v9Lwf9t73jj5uDb6-ukpVWstxYdOxVJE4Hs185kS8wNJFlITCfU5FCpJDnoWbazULuibDIPe0WmuVBmKUFT4tclizLInDnIw0hxjUy037aLq6TOV5ymWuu87xkLGUuOBg8d3VWproMpNY3yKyVe82-ajprJ-x2808Et8g5rFcLhbfJTPf5enEHXOeunjWm_gkE7ZBm |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8Et-SNE%E9%99%8D%E7%BB%B4%E6%96%B9%E6%B3%95%E7%9A%84%E6%BB%9A%E5%8A%A8%E8%BD%B4%E6%89%BF%E5%89%A9%E4%BD%99%E5%AF%BF%E5%91%BD%E9%A2%84%E6%B5%8B&rft.jtitle=%E6%9C%BA%E6%A2%B0%E5%BC%BA%E5%BA%A6&rft.au=%E9%92%9F%E5%BB%BA%E5%8D%8E&rft.au=%E9%BB%84%E8%81%AA&rft.au=%E9%92%9F%E8%88%9C%E8%81%AA&rft.au=%E8%82%96%E9%A1%BA%E6%A0%B9&rft.date=2024&rft.pub=%E7%A6%8F%E5%B7%9E%E5%A4%A7%E5%AD%A6+%E6%9C%BA%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%8F%8A%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2%2C%E7%A6%8F%E5%B7%9E+350116&rft.issn=1001-9669&rft.volume=46&rft.issue=4&rft.spage=969&rft.epage=976&rft_id=info:doi/10.16579%2Fj.issn.1001.9669.2024.04.028&rft.externalDocID=jxqd202404028 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjxqd%2Fjxqd.jpg |