基于混沌粒子群的双馈风电机组LVRT实测建模及暂态参数辨识

高准确度仿真模型是进行大规模风电并网暂态稳定分析的基础,然而双馈风电机组(DFIG)控制策略与参数属于技术秘密难以获取,模型仿真准确性难以保证.针对DFIG故障暂态精确建模难题,提出了基于实测数据的DFIG建模及参数辨识方法.首先,基于电力系统综合稳定程序(PSASP)中DFIG模型及控制结构,建立低电压穿越(LVRT)控制数学模型并分析故障暂态过程,明确LVRT暂态控制核心参数.其次,基于DFIG的LVRT部分现场实测工况数据,利用混沌粒子群算法实现了DFIG故障暂态控制参数辨识.最后,基于剩余实测工况数据进行辨识参数准确性分析与校验,仿真验证了所提参数辨识方法的有效性及准确性.所提方法辨识...

Full description

Saved in:
Bibliographic Details
Published in中国电力 Vol. 57; no. 8; pp. 75 - 84
Main Authors 李丹, 秦世耀, 李少林, 贺敬
Format Magazine Article
LanguageChinese
Published 可再生能源并网全国重点实验室(中国电力科学研究院有限公司),北京 100192 28.08.2024
Subjects
Online AccessGet full text
ISSN1004-9649
DOI10.11930/j.issn.1004-9649.202310040

Cover

Abstract 高准确度仿真模型是进行大规模风电并网暂态稳定分析的基础,然而双馈风电机组(DFIG)控制策略与参数属于技术秘密难以获取,模型仿真准确性难以保证.针对DFIG故障暂态精确建模难题,提出了基于实测数据的DFIG建模及参数辨识方法.首先,基于电力系统综合稳定程序(PSASP)中DFIG模型及控制结构,建立低电压穿越(LVRT)控制数学模型并分析故障暂态过程,明确LVRT暂态控制核心参数.其次,基于DFIG的LVRT部分现场实测工况数据,利用混沌粒子群算法实现了DFIG故障暂态控制参数辨识.最后,基于剩余实测工况数据进行辨识参数准确性分析与校验,仿真验证了所提参数辨识方法的有效性及准确性.所提方法辨识结果泛化能力强、准确度高,具有较高的工程应用价值.
AbstractList 高准确度仿真模型是进行大规模风电并网暂态稳定分析的基础,然而双馈风电机组(DFIG)控制策略与参数属于技术秘密难以获取,模型仿真准确性难以保证.针对DFIG故障暂态精确建模难题,提出了基于实测数据的DFIG建模及参数辨识方法.首先,基于电力系统综合稳定程序(PSASP)中DFIG模型及控制结构,建立低电压穿越(LVRT)控制数学模型并分析故障暂态过程,明确LVRT暂态控制核心参数.其次,基于DFIG的LVRT部分现场实测工况数据,利用混沌粒子群算法实现了DFIG故障暂态控制参数辨识.最后,基于剩余实测工况数据进行辨识参数准确性分析与校验,仿真验证了所提参数辨识方法的有效性及准确性.所提方法辨识结果泛化能力强、准确度高,具有较高的工程应用价值.
Abstract_FL The high-accuracy simulation model is the basis for transient stability analysis of large-scale wind power integration.However,the control strategies and parameters of doubly-fed wind turbines are technical secrets that are difficult to obtain,and the accuracy of model simulation is difficult to guarantee.In order to address the fault transient modeling problems of doubly-fed wind turbines,a measured data-based modeling and parameter identification method of doubly-fed wind turbines is proposed.Firstly,based on the DFIG model and control structure of the Power System Integrated Stability Program(PSASP),a low voltage ride through(LVRT)control mathematical model is established to analyze the fault transient process,and the LVRT transient control core parameters are clarified.Secondly,based on part of the field measured LVRT data of doubly-fed wind turbines,the fault transient parameters are identified with the chaotic particle swarm optimization algorithm.Finally,the accuracy of the identification parameters are analyzed and verified based on the remaining measured data.The simulation results have verified the effectiveness and accuracy of the proposed parameter identification method.The proposed method has strong generalization ability and high accuracy of identification results,and is of great engineering application value.
Author 秦世耀
贺敬
李少林
李丹
AuthorAffiliation 可再生能源并网全国重点实验室(中国电力科学研究院有限公司),北京 100192
AuthorAffiliation_xml – name: 可再生能源并网全国重点实验室(中国电力科学研究院有限公司),北京 100192
Author_FL LI Dan
LI Shaolin
QIN Shiyao
HE Jing
Author_FL_xml – sequence: 1
  fullname: LI Dan
– sequence: 2
  fullname: QIN Shiyao
– sequence: 3
  fullname: LI Shaolin
– sequence: 4
  fullname: HE Jing
Author_xml – sequence: 1
  fullname: 李丹
– sequence: 2
  fullname: 秦世耀
– sequence: 3
  fullname: 李少林
– sequence: 4
  fullname: 贺敬
BookMark eNo9j0tLw0AAhPdQwVr7K8Rj4j7y2qMUXxAoSPVaNptNMZQUDCJ40lJEtDQieimiiCK9-KBQCin017ib9l8YUTwNM4f5ZpZAIWpFAoAVBHWEKIFroX4Qx5GOIDQ0ahlUxxCTHwcLoPifLoJyHIcQQgSpRTEpgqp8TL_SnhqP1bCbDW_k23U2fcn6HZl0568X8-dedjtS92k26bj7uzX5_qBGV3KSqsGTTC5Vv61Oz2TSVnefs-lg9nG-DBYC1oxF-U9LYG9zo1bZ1tzq1k5l3dXifIyjmQxTzE2HCoNybBNTWIHFOTc9nxoCMe55tk0MSnHgWb6NHcgdW3BEBPMYYwEpgdXf3mMWBSxq1MPW0WGUE-snDb-Znzegk4PIN2sLb0I
ContentType Magazine Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11930/j.issn.1004-9649.202310040
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL LVRT Measurement Model and Transient Parameter Identification of Wind Turbine Based on Chaotic Particle Swarm
EndPage 84
ExternalDocumentID zgdl202408008
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1008-5a292c589e49c2735e6f6ccc5bd94e1acbb7734992fb6d7280c87ec13eabaaaf3
ISSN 1004-9649
IngestDate Thu May 29 04:08:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords 混沌粒子群
double-fed induction generator
chaotic particle swarm
双馈风电机组
实测数据
low voltage ride through
measured data
低压穿越
参数辨识
parameter identification
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1008-5a292c589e49c2735e6f6ccc5bd94e1acbb7734992fb6d7280c87ec13eabaaaf3
PageCount 10
ParticipantIDs wanfang_journals_zgdl202408008
PublicationCentury 2000
PublicationDate 2024-08-28
PublicationDateYYYYMMDD 2024-08-28
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-28
  day: 28
PublicationDecade 2020
PublicationTitle 中国电力
PublicationTitle_FL Electric Power
PublicationYear 2024
Publisher 可再生能源并网全国重点实验室(中国电力科学研究院有限公司),北京 100192
Publisher_xml – name: 可再生能源并网全国重点实验室(中国电力科学研究院有限公司),北京 100192
SSID ssj0001096923
ssib001129049
ssib051368982
Score 1.4354551
Snippet ...
SourceID wanfang
SourceType Aggregation Database
StartPage 75
Title 基于混沌粒子群的双馈风电机组LVRT实测建模及暂态参数辨识
URI https://d.wanfangdata.com.cn/periodical/zgdl202408008
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAMJQKoi9-42cp6D5J6mWTbHYec3cpRURBWulbSXK59kFOsO1Ln7QUES2tiL4UUUSRvvhBoRSu0F_j5dp_4cxk7y5CxSocYTI7Ox87SWayl521rBuZ68Re1gxsDD2Z7WXKtzGPAztrovtVSptvc7XPu2piyrs97U8PDdulr5YWF5KxdOnQdSX_41XEoV9plew_eLbPFBEIo3_xiB7G45F8LCJfwLiohiLy6KgjESlRDehHgBS6JqKAAJBEHNYFVBgTidAjALCXR016nIlBhEpozYDLDJEGmfvEEGosC7tXsdedB_cnmWkkoBCMXKqEwWaiUyLUInR63BlD8iQBuoJJbK-JMYAdUTnNymkCQmxS5fSZ7dRkBlmOUuol_XwSAf2_kJhlnU3gTlUYtAQiDMjQogUUCSOFKod0Zq3AYQxaGgxIkKdnDEXdTRFLM4MiPZoSNivS6Zo3pqJJBKD9PdXRgSTdZWMU8SMXoVQQVcWDXWfx2MvncelbDkIHhg-OINIPnIHeC9mfjEFXS32UsTMjU4hDypAVCCtERkChEghA_tJcERoMplCblKwZY1GcBLyJ-bSGY2eu07B20-GsvxQS6VMlUEVh2V7MLIqKm2eDLgXAYhucXirlHR6kwa1wlCb-Y33-Y5JqEVJUGeQm_S9Gl2YbDyXX4-Ol_cdkEDhBaQaFs3-aUx3MJviOqzSY0k085Yqv6yCLJTdG5nHrek-jW3_Whxf0tZpxa7aUe06etk71isCPhsUj4Iw1tDR31jpZqiV6zrrX-dD-2V7Ld3byrdXu1uvO11fdvc_djZXO-urBl-cHn9a6b7bzd-3u7grduJ1v7_Ptl53ddr75sbP-It9Yzp887awv529_7O9t7n9_dt6aGo8maxO22S3FnqcCXbYfS5CpryHzIMWXEj9TTZWmqZ80wMucOE2SIHA9ANlMVIN2pUt1kKWOm8VJHMdN94I13HrUyi5ao0q7lTSRVAdMe82gATJzMLZLJ3ESCZ5_yRox4zFjnobzM7856PLfCK5YJwZ34lVreOHxYnYNs_uFZIR9-gth8LpB
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B7%E6%B2%8C%E7%B2%92%E5%AD%90%E7%BE%A4%E7%9A%84%E5%8F%8C%E9%A6%88%E9%A3%8E%E7%94%B5%E6%9C%BA%E7%BB%84LVRT%E5%AE%9E%E6%B5%8B%E5%BB%BA%E6%A8%A1%E5%8F%8A%E6%9A%82%E6%80%81%E5%8F%82%E6%95%B0%E8%BE%A8%E8%AF%86&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%94%B5%E5%8A%9B&rft.au=%E6%9D%8E%E4%B8%B9&rft.au=%E7%A7%A6%E4%B8%96%E8%80%80&rft.au=%E6%9D%8E%E5%B0%91%E6%9E%97&rft.au=%E8%B4%BA%E6%95%AC&rft.date=2024-08-28&rft.pub=%E5%8F%AF%E5%86%8D%E7%94%9F%E8%83%BD%E6%BA%90%E5%B9%B6%E7%BD%91%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%28%E4%B8%AD%E5%9B%BD%E7%94%B5%E5%8A%9B%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%29%2C%E5%8C%97%E4%BA%AC+100192&rft.issn=1004-9649&rft.volume=57&rft.issue=8&rft.spage=75&rft.epage=84&rft_id=info:doi/10.11930%2Fj.issn.1004-9649.202310040&rft.externalDocID=zgdl202408008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgdl%2Fzgdl.jpg