基于光电同轴传感的极耳激光焊虚焊实时检测
TG456.7; 针对多层铝箔极耳和铝片的搭接形式,首先搭建了基于多波段光电同轴传感的激光焊过程实时监测系统,开展了不同激光功率和离焦量的激光焊试验,实时采集不同激光能量下的多波段光电信号;其次,利用小波散射网络从原始信号中提取出多尺度高维特征,并结合长短期记忆网络实现时间动态建模,最终达到实时检测虚焊缺陷的目标.结果表明,在小样本规模下,构建的WSN-LSTM模型准确率达到 99.6%,其分类性能优于其他循环神经网络和轻量化卷积神经网络模型.同时,WSN-LSTM模型轻量化使其在训练时间最短,且平均单个样本处理时间仅为 0.15 ms,有利于在动力电池产线快速部署,并实现虚焊缺陷的实时检测....
Saved in:
Published in | 焊接学报 Vol. 45; no. 11; pp. 110 - 114 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
上海工程技术大学,材料科学与工程学院,上海,201620
01.11.2024
上海市激光先进制造技术协同创新中心,上海,201620%泰尔智慧(上海)激光科技有限公司,上海,201100%必能信超声(上海)有限公司,上海,201620%南京航空航天大学,材料科学与技术学院,南京,211106 |
Subjects | |
Online Access | Get full text |
ISSN | 0253-360X |
DOI | 10.12073/j.hjxb.20240711001 |
Cover
Loading…
Abstract | TG456.7; 针对多层铝箔极耳和铝片的搭接形式,首先搭建了基于多波段光电同轴传感的激光焊过程实时监测系统,开展了不同激光功率和离焦量的激光焊试验,实时采集不同激光能量下的多波段光电信号;其次,利用小波散射网络从原始信号中提取出多尺度高维特征,并结合长短期记忆网络实现时间动态建模,最终达到实时检测虚焊缺陷的目标.结果表明,在小样本规模下,构建的WSN-LSTM模型准确率达到 99.6%,其分类性能优于其他循环神经网络和轻量化卷积神经网络模型.同时,WSN-LSTM模型轻量化使其在训练时间最短,且平均单个样本处理时间仅为 0.15 ms,有利于在动力电池产线快速部署,并实现虚焊缺陷的实时检测. |
---|---|
AbstractList | TG456.7; 针对多层铝箔极耳和铝片的搭接形式,首先搭建了基于多波段光电同轴传感的激光焊过程实时监测系统,开展了不同激光功率和离焦量的激光焊试验,实时采集不同激光能量下的多波段光电信号;其次,利用小波散射网络从原始信号中提取出多尺度高维特征,并结合长短期记忆网络实现时间动态建模,最终达到实时检测虚焊缺陷的目标.结果表明,在小样本规模下,构建的WSN-LSTM模型准确率达到 99.6%,其分类性能优于其他循环神经网络和轻量化卷积神经网络模型.同时,WSN-LSTM模型轻量化使其在训练时间最短,且平均单个样本处理时间仅为 0.15 ms,有利于在动力电池产线快速部署,并实现虚焊缺陷的实时检测. |
Abstract_FL | Targeting the lap joint of multilayer aluminum tabs and an aluminum sheet,a real-time monitoring system for the laser welding process based on multi-band photoelectric coaxial sensing was established.Experiments on laser welding processes with different laser powers and defocusing conditions were conducted,and multi-band photoelectric signals under different laser energies were collected in real-time.Secondly,a wavelet scattering network(WSN)was used to extract multi-scale high-dimensional features from the raw signals.Combined with a long short-term memory(LSTM)network for temporal dynamic modeling,this approach ultimately achieves the goal of real-time detection of pseudo welding defects.The results indicate that,with a small sample size,the constructed WSN-LSTM model achieves an accuracy of 99.6%,and its classification performance surpasses that of other recurrent neural networks and lightweight convolutional neural network models.Additionally,the lightweight characteristic of the WSN-LSTM model results in the shortest training time,with an average processing time per sample of only 0.15 ms,making it advantageous for rapid deployment on power battery production lines and real-time detection of pseudo welding defects. |
Author | 杜辉 魏于桐 张培磊 彭彪 占小红 吴頔 曾达 |
AuthorAffiliation | 上海工程技术大学,材料科学与工程学院,上海,201620;上海市激光先进制造技术协同创新中心,上海,201620%泰尔智慧(上海)激光科技有限公司,上海,201100%必能信超声(上海)有限公司,上海,201620%南京航空航天大学,材料科学与技术学院,南京,211106 |
AuthorAffiliation_xml | – name: 上海工程技术大学,材料科学与工程学院,上海,201620;上海市激光先进制造技术协同创新中心,上海,201620%泰尔智慧(上海)激光科技有限公司,上海,201100%必能信超声(上海)有限公司,上海,201620%南京航空航天大学,材料科学与技术学院,南京,211106 |
Author_FL | ZENG Da PENG Biao ZHANG Peilei WU Di DU Hui ZHAN Xiaohong WEI Yutong |
Author_FL_xml | – sequence: 1 fullname: ZENG Da – sequence: 2 fullname: WU Di – sequence: 3 fullname: PENG Biao – sequence: 4 fullname: DU Hui – sequence: 5 fullname: WEI Yutong – sequence: 6 fullname: ZHANG Peilei – sequence: 7 fullname: ZHAN Xiaohong |
Author_xml | – sequence: 1 fullname: 曾达 – sequence: 2 fullname: 吴頔 – sequence: 3 fullname: 彭彪 – sequence: 4 fullname: 杜辉 – sequence: 5 fullname: 魏于桐 – sequence: 6 fullname: 张培磊 – sequence: 7 fullname: 占小红 |
BookMark | eNrjYmDJy89LZWCQNjTQMzQyMDfWz9LLyKpI0jMyMDIxMDc0NDAwZGHgNDAyNdY1NjOI4GDgLS7OTDIwMjY0Mze0MOJksHk6f9eTXX1PWzufT9n6dELPi71bnuxZ8Kxl_vNZLc_mNb5o2PxsfwNItqXrxcxZQPLpunnPpm97trjh2dZuHgbWtMSc4lReKM3NEOrmGuLsoevj7-7p7OijWwx0gJmuZaJJkmVymrFlarJ5splFSnKicZJJinGqcZKFpamhkYmJkUGqpXGSqVmiQQrQ0UnGialmycnJSclpyWlplgYGxtwMqhBzyxPz0hLz0uOz8kuL8oA2xoM8C_Ir0KeGZsYA2ONg_g |
ClassificationCodes | TG456.7 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12073/j.hjxb.20240711001 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Real-time detection of pseudo-defect in laser welding of power battery tabs based on photoelectric coaxial sensing |
EndPage | 114 |
ExternalDocumentID | hjxb202411016 |
GrantInformation_xml | – fundername: (国家自然科学基金); 上海市Ⅲ类高峰学科—材料科学与工程; (上海高校中青年教师国内访学进修计划) funderid: (国家自然科学基金); (高能束智能加工与绿色制造); (上海高校中青年教师国内访学进修计划) |
GroupedDBID | -02 2B. 4A8 5XA 5XC 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CDRFL CW9 GROUPED_DOAJ PSX TCJ TGT U1G U5L |
ID | FETCH-LOGICAL-s1006-9a4b9cf39ec7c68dca3b4d3e3b895124420e93b56a0d071b3ae6cccbcfcff9003 |
ISSN | 0253-360X |
IngestDate | Thu May 29 04:08:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | 小波散射网络 虚焊检测 wavelet scattering network pseudo-defect detection 在线监测 photoelectric sensing 激光焊 laser welding 光电传感 online monitoring |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1006-9a4b9cf39ec7c68dca3b4d3e3b895124420e93b56a0d071b3ae6cccbcfcff9003 |
PageCount | 5 |
ParticipantIDs | wanfang_journals_hjxb202411016 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 焊接学报 |
PublicationTitle_FL | Transactions of the China Welding Institution |
PublicationYear | 2024 |
Publisher | 上海工程技术大学,材料科学与工程学院,上海,201620 上海市激光先进制造技术协同创新中心,上海,201620%泰尔智慧(上海)激光科技有限公司,上海,201100%必能信超声(上海)有限公司,上海,201620%南京航空航天大学,材料科学与技术学院,南京,211106 |
Publisher_xml | – name: 上海工程技术大学,材料科学与工程学院,上海,201620 – name: 上海市激光先进制造技术协同创新中心,上海,201620%泰尔智慧(上海)激光科技有限公司,上海,201100%必能信超声(上海)有限公司,上海,201620%南京航空航天大学,材料科学与技术学院,南京,211106 |
SSID | ssib023167182 ssib002263800 ssib051374092 ssib001105240 ssj0050129 |
Score | 2.4069536 |
Snippet | TG456.7;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 110 |
Title | 基于光电同轴传感的极耳激光焊虚焊实时检测 |
URI | https://d.wanfangdata.com.cn/periodical/hjxb202411016 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxNBFB_aetGD-ImfpQfnmLofs_MBXmaTDUXQUwu5lZ3NxuIhQpuC9BQhHqwiHgSxh1bw7kXroSj-M02aP8P3ZifZLQ34AcswefPmt-_t2515-zLzlpB7mPWK521RMyznNWagJlPBazaXmunkfhjh5uRHj_nKGnvYilpz87uVVUvbPbOc7czcV_I_VgUa2BV3yf6DZaegQIA62BdKsDCUf2VjmkRUNWmsacKwlAlSJByKJoIqIEaWx6OyThNJ4waNmWWuU-3RhFPJEAGZNdaBohLwLpFZejQOkRI3sV5FBk6pkUcp7FhSIqoTREAcQWOOFR3a7hyFkXHVG6505Ci8ttLqBtW2I9B1NLkjLGRM48TqkcBRtlgNUTGFWilWbQGVAdBV9Cm0BlV1h1Z8YGgS_giY2wc4uWHtJZNOUFAjFhZRWImhhKbYSVyoCsC6aZVhVItSq6A-OXPBxvEKIgIYwK8oX5wumXWWKY_CvjqwmGfEC-rgc_HAqwz0QRTWQu61qrNSkWRz8vT5lTnGd-uAc_eLzZwJAxi77VS48fS5WcYrB84kJtwqJ_7pckxkQQ4fQznz5FwgRLHkwYUnrGsNjnjAqnumYeQuUzsGmFHBL_MkRX4omM3nVXhFEQY8bbzT6eoygKGY988KabfQdTtp90nF21u9RC6617QlXTxzl8nczsYVcqGSvPMqeTA8ODo-ejt8-erk_eHw3Zvxz2_HPz6NBgcne4PR_otx_-voVx9bB7vjj3tQDr_sjz58H33ujw5fXyNrzWS1vlJz3yKpbfkYdFMpMyrrhCrPRMZlO0tDw9phHhoJ7yjgIwderkIT8dRrgw4mTHOeZZnJOlmng_8WXCcL3Wfd_AZZwi5-O8LIAbiQJldSGC6F9HLfS9upf5MsOt3X3ViztX7KQrf-xHCbnC8flTtkobe5nd8F37lnFq1RfwPu15CS |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%85%89%E7%94%B5%E5%90%8C%E8%BD%B4%E4%BC%A0%E6%84%9F%E7%9A%84%E6%9E%81%E8%80%B3%E6%BF%80%E5%85%89%E7%84%8A%E8%99%9A%E7%84%8A%E5%AE%9E%E6%97%B6%E6%A3%80%E6%B5%8B&rft.jtitle=%E7%84%8A%E6%8E%A5%E5%AD%A6%E6%8A%A5&rft.au=%E6%9B%BE%E8%BE%BE&rft.au=%E5%90%B4%E9%A0%94&rft.au=%E5%BD%AD%E5%BD%AA&rft.au=%E6%9D%9C%E8%BE%89&rft.date=2024-11-01&rft.pub=%E4%B8%8A%E6%B5%B7%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6%2C%E6%9D%90%E6%96%99%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7%2C201620&rft.issn=0253-360X&rft.volume=45&rft.issue=11&rft.spage=110&rft.epage=114&rft_id=info:doi/10.12073%2Fj.hjxb.20240711001&rft.externalDocID=hjxb202411016 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhjxb%2Fhjxb.jpg |