多域浅层特征引导下雷达有源干扰多模态对比识别方法

TN958; 在雷达有源干扰识别任务中,如何实现多域浅层特征与时频域深层网络特征的稳健联合,并在极端小样本下维持高干扰识别准确率是亟待解决的关键问题.针对此问题,该文提出一种多域浅层特征引导下雷达有源干扰多模态对比识别方法.在充分提取有源干扰多域浅层特征基础上,设计优选单元自动选择有效特征,生成对应含有隐式专家知识的文本模态.将文本模态与时频变换图像分别输入文本和图像编码器,构建多模态特征对并映射至模态对齐高维空间中,利用文本特征作为锚点,通过对比学习引导同类干扰的时频图像特征聚合,以优化图像编码器表征能力,实现干扰识别特征类内更聚集、类间更分离.实验结果表明,相较于已有深浅特征直接联合,所提...

Full description

Saved in:
Bibliographic Details
Published in雷达学报 Vol. 13; no. 5; pp. 1004 - 1018
Main Authors 郭文杰, 吴振华, 曹宜策, 张强, 张磊, 杨利霞
Format Journal Article
LanguageChinese
Published 中国电子科技集团公司第三十八研究所 合肥 230088%天基综合信息系统全国重点实验室 北京 100094%中山大学电子与通信工程学院 深圳 518107 01.10.2024
安徽大学电子信息工程学院 合肥 230601%安徽大学电子信息工程学院 合肥 230601
Subjects
Online AccessGet full text
ISSN2095-283X
DOI10.12000/JR24129

Cover

Abstract TN958; 在雷达有源干扰识别任务中,如何实现多域浅层特征与时频域深层网络特征的稳健联合,并在极端小样本下维持高干扰识别准确率是亟待解决的关键问题.针对此问题,该文提出一种多域浅层特征引导下雷达有源干扰多模态对比识别方法.在充分提取有源干扰多域浅层特征基础上,设计优选单元自动选择有效特征,生成对应含有隐式专家知识的文本模态.将文本模态与时频变换图像分别输入文本和图像编码器,构建多模态特征对并映射至模态对齐高维空间中,利用文本特征作为锚点,通过对比学习引导同类干扰的时频图像特征聚合,以优化图像编码器表征能力,实现干扰识别特征类内更聚集、类间更分离.实验结果表明,相较于已有深浅特征直接联合,所提引导式联合方法可以实现特征差异处理,从而提高识别特征判别力和泛化力.且在极端小样本条件(每类干扰训练样本为2~3个)下,所提识别方法较先进对比方法的准确率提升9.84%,证明了该文方法的有效性与鲁棒性.
AbstractList TN958; 在雷达有源干扰识别任务中,如何实现多域浅层特征与时频域深层网络特征的稳健联合,并在极端小样本下维持高干扰识别准确率是亟待解决的关键问题.针对此问题,该文提出一种多域浅层特征引导下雷达有源干扰多模态对比识别方法.在充分提取有源干扰多域浅层特征基础上,设计优选单元自动选择有效特征,生成对应含有隐式专家知识的文本模态.将文本模态与时频变换图像分别输入文本和图像编码器,构建多模态特征对并映射至模态对齐高维空间中,利用文本特征作为锚点,通过对比学习引导同类干扰的时频图像特征聚合,以优化图像编码器表征能力,实现干扰识别特征类内更聚集、类间更分离.实验结果表明,相较于已有深浅特征直接联合,所提引导式联合方法可以实现特征差异处理,从而提高识别特征判别力和泛化力.且在极端小样本条件(每类干扰训练样本为2~3个)下,所提识别方法较先进对比方法的准确率提升9.84%,证明了该文方法的有效性与鲁棒性.
Abstract_FL Achieving robust joint utilization of multidomain characteristics and deep-network features while maintaining a high jamming-recognition accuracy with limited samples is challenging.To address this issue,this paper proposes a multidomain characteristic-guided multimodal contrastive recognition method for active radar jamming.This method involves first thoroughly extracting the multidomain characteristics of active jamming and then designing an optimization unit to automatically select effective characteristics and generate a text modality imbued with implicit expert knowledge.The text modality and involved time-frequency transformation image are separately fed into text and image encoders to construct multimodal-feature pairs and map them to a high-dimensional space for modal alignment.The text features are used as anchors and a guide to time-frequency image features for aggregation around the anchors through contrastive learning,optimizing the image encoder's representation capability,achieving tight intraclass and separated interclass distributions of active jamming.Experiments show that compared to existing methods,which involve directly combining multidomain characteristics and deep-network features,the proposed guided-joint method can achieve differential feature processing,thereby enhancing the discriminative and generalization capabilities of recognition features.Moreover,under extremely small-sample conditions(2~3 training samples for each type of jamming),the accuracy of our method is 9.84%higher than those of comparative methods,proving the effectiveness and robustness of the proposed method.
Author 张强
张磊
郭文杰
杨利霞
吴振华
曹宜策
AuthorAffiliation 安徽大学电子信息工程学院 合肥 230601%安徽大学电子信息工程学院 合肥 230601;中国电子科技集团公司第三十八研究所 合肥 230088%天基综合信息系统全国重点实验室 北京 100094%中山大学电子与通信工程学院 深圳 518107
AuthorAffiliation_xml – name: 安徽大学电子信息工程学院 合肥 230601%安徽大学电子信息工程学院 合肥 230601;中国电子科技集团公司第三十八研究所 合肥 230088%天基综合信息系统全国重点实验室 北京 100094%中山大学电子与通信工程学院 深圳 518107
Author_FL ZHANG Qiang
WU Zhenhua
GUO Wenjie
ZHANG Lei
CAO Yice
YANG Lixia
Author_FL_xml – sequence: 1
  fullname: GUO Wenjie
– sequence: 2
  fullname: WU Zhenhua
– sequence: 3
  fullname: CAO Yice
– sequence: 4
  fullname: ZHANG Qiang
– sequence: 5
  fullname: ZHANG Lei
– sequence: 6
  fullname: YANG Lixia
Author_xml – sequence: 1
  fullname: 郭文杰
– sequence: 2
  fullname: 吴振华
– sequence: 3
  fullname: 曹宜策
– sequence: 4
  fullname: 张强
– sequence: 5
  fullname: 张磊
– sequence: 6
  fullname: 杨利霞
BookMark eNotjT1Lw0Ach2-oYK0Fv4Rj9F6TyyhFrVIQRMGt_HOXE6WkYBAdraAYXBysgwpFcBAc4guikdJP4531WxjQ6Rl-D79nClWSbhIjNEPwHKEY4_nVdcoJDSuoSnEoPCrZ1iSqp-lOhJlPhY8Zr6Kmvb-2g4F7O7HPx99ZYUc9O-zbfPj1cf5z8z4ejdxt5j4vbPHisqdSdg937qhn88Lll-P81J49uqvCvfan0YSBThrX_1lDm0uLG42m11pbXmkstLyUYCw8yYXQAdDIxCRUlCmpFYQGSxZrCMtNKxNo31eUMwUEAGioQUoVGO4ziFgNzf79HkBiINlu73b395Ky2O7ow4hiyrEoQ-wXZ8BoRw
ClassificationCodes TN958
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12000/JR24129
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Multidomain Characteristic-guided Multimodal Contrastive Recognition Method for Active Radar Jamming
EndPage 1018
ExternalDocumentID ldxb202405005
GroupedDBID -0Y
2B.
4A8
5VS
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
GROUPED_DOAJ
IPNFZ
KQ8
PSX
RIG
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1005-8455d7a2bfe19c23c8dca9f083eda955ddcf7d66c243ca1aaa29da88c7f463ab3
ISSN 2095-283X
IngestDate Thu May 29 04:01:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 雷达有源干扰识别
极端小样本
多模态
Multidomain jamming characteristics
Multimodal
Extreme small samples
监督对比学习
Supervised contrastive learning
多域浅层干扰特征
Radar active jamming recognition
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1005-8455d7a2bfe19c23c8dca9f083eda955ddcf7d66c243ca1aaa29da88c7f463ab3
PageCount 15
ParticipantIDs wanfang_journals_ldxb202405005
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle 雷达学报
PublicationTitle_FL Journal of Radars
PublicationYear 2024
Publisher 中国电子科技集团公司第三十八研究所 合肥 230088%天基综合信息系统全国重点实验室 北京 100094%中山大学电子与通信工程学院 深圳 518107
安徽大学电子信息工程学院 合肥 230601%安徽大学电子信息工程学院 合肥 230601
Publisher_xml – name: 中国电子科技集团公司第三十八研究所 合肥 230088%天基综合信息系统全国重点实验室 北京 100094%中山大学电子与通信工程学院 深圳 518107
– name: 安徽大学电子信息工程学院 合肥 230601%安徽大学电子信息工程学院 合肥 230601
SSID ssib036256034
ssj0001853618
ssib023646539
ssib036438606
ssib051376368
ssib038075146
ssib058814069
ssib011592811
ssib054421839
Score 2.3680184
Snippet TN958;...
SourceID wanfang
SourceType Aggregation Database
StartPage 1004
Title 多域浅层特征引导下雷达有源干扰多模态对比识别方法
URI https://d.wanfangdata.com.cn/periodical/ldxb202405005
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANEi96EH8xM_iwTktq8kkM5k5zuxmKYIepEJvkk02epAKtoJ4soJi8eLBelChCB4ED-sHopXSX2OiXvwNvvcyu0mx4Acsy8vMy_vezJvZyRvPO5PlBYdnr-gqXvjdKNd5V4Wp6ipVxEMti0xR7c4LF-Xc5ej8gljYNfOztWvp1vLwbHZnx_dK_ser0AZ-xbdk_8GzU6LQADD4F77Bw_D9Vz5miWAmYtogoAf4SSSzgimBLTZgirMkZkozq6klgcyRgB7ThGMGCCcRs4opyxLNtGU2ZolCZPgAQd1DCkjZMO3T7UCQYwtS9ltiSGYUMwF1-Y4XsqDbAdARUgZASexSAFtiIR2ODVl9HOYkY95JJKDZZ0YSF8OMmEQN4qoQO2uSKiagDzI2KAJ1sBHd3ENRUI4-U0mDIokjWcwkqD7YEIhq2aYCZjO-A9xqh1s94dF0H14d786-KJcg0n2kCLawwimDZgUe0Bg4rcB8tea1pQAwnEQF_B4BA6SJd_WopXahnqgTTJAt4fhkegDAYdJ5TvkdZw7wA1gXgsWIDswWYUxgXDi3Gu2iC7wPBKylgJneBmwHE48HZM4YnWitQ9aDiSCqpb1G3ygyA3BtTJ1glzHombrFRCQjXOuYmIG_e52A9qqSjC3LQrzbYCJ13AqT321dG4u44VYf09JDYKwZQcaqfxNTOuAPkI53KFBjxwzCw4YdATlsfbByPaxymFR0Iale2JYDhK1nnWgN6FhQsZUcYn27HRMPfOMND1W_BBmxW8LbXsb9en57iAHoCyq5vJvHcb2txC0BwfgHkzPNVTPe4tkOWDl6cg25JsxPmnKO0B0q2eySwLMjRKsWlAgwe2iWE0QU0YRoeq2w3J3UzZo05O6S_hKZGsnV60b1zjnl6PXGxSJdvNrKxOf3e_vcFPq0qZ-HB7xdd64d9Pa2Cqse8ubKV8_K9fXq4_3y3b1vqxvl1kq5uVaON79-fvTj-afvW1vVi9Xqy-Ny4321-haQq9cvq7sr5XijGj_5Pn5QPnxTPd2oPqwd9i4PkvneXNedGdNdCrCosoqEyOOUD4tRoDMeZirPUl3ARHOUpxr68qyIcykzHoVZGqRpynWeKpXFRSTDdBge8WYWbyyOjnqnc-kXmme5GOYqGokcj6qA2WU2lBwGN6GPebPODlfcmLB0ZZuXj_8J4YS3p3kmnfRmlm_eGp2COc7ycJYC4xcItvFG
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%9A%E5%9F%9F%E6%B5%85%E5%B1%82%E7%89%B9%E5%BE%81%E5%BC%95%E5%AF%BC%E4%B8%8B%E9%9B%B7%E8%BE%BE%E6%9C%89%E6%BA%90%E5%B9%B2%E6%89%B0%E5%A4%9A%E6%A8%A1%E6%80%81%E5%AF%B9%E6%AF%94%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E9%9B%B7%E8%BE%BE%E5%AD%A6%E6%8A%A5&rft.au=%E9%83%AD%E6%96%87%E6%9D%B0&rft.au=%E5%90%B4%E6%8C%AF%E5%8D%8E&rft.au=%E6%9B%B9%E5%AE%9C%E7%AD%96&rft.au=%E5%BC%A0%E5%BC%BA&rft.date=2024-10-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E9%9B%86%E5%9B%A2%E5%85%AC%E5%8F%B8%E7%AC%AC%E4%B8%89%E5%8D%81%E5%85%AB%E7%A0%94%E7%A9%B6%E6%89%80+%E5%90%88%E8%82%A5+230088%25%E5%A4%A9%E5%9F%BA%E7%BB%BC%E5%90%88%E4%BF%A1%E6%81%AF%E7%B3%BB%E7%BB%9F%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E5%8C%97%E4%BA%AC+100094%25%E4%B8%AD%E5%B1%B1%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E4%B8%8E%E9%80%9A%E4%BF%A1%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E6%B7%B1%E5%9C%B3+518107&rft.issn=2095-283X&rft.volume=13&rft.issue=5&rft.spage=1004&rft.epage=1018&rft_id=info:doi/10.12000%2FJR24129&rft.externalDocID=ldxb202405005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fldxb%2Fldxb.jpg