面向遥感图像场景分类的LAG-MANet模型

P237; 遥感图像分类过程中,局部信息与全局信息至关重要.目前,遥感图像分类的方法主要包括卷积神经网络(CNN)及Transformer.CNN在局部信息提取方面具有优势,但在全局信息提取方面有一定的局限性.相比之下,Transformer在全局信息提取方面表现出色,但计算复杂度高.为提高遥感图像场景分类性能,降低复杂度,设计了 LAG-MANet纯卷积网络.该网络既关注局部特征,又关注全局特征,并且考虑了多尺度特征.输入图像被预处理后,首先采用多分支扩张卷积模块(MBDConv)提取多尺度特征;然后依次进入网络的4个阶段,在每个阶段采用并行双域特征融合模块(P2DF)分支路提取局部、全局特...

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 53; no. 7; pp. 1371 - 1383
Main Authors 王威, 郑薇, 王新
Format Journal Article
LanguageChinese
Published 长沙理工大学计算机与通信工程学院,湖南长沙 410114 12.08.2024
Subjects
Online AccessGet full text
ISSN1001-1595
DOI10.11947/j.AGCS.2024.20230074

Cover

Abstract P237; 遥感图像分类过程中,局部信息与全局信息至关重要.目前,遥感图像分类的方法主要包括卷积神经网络(CNN)及Transformer.CNN在局部信息提取方面具有优势,但在全局信息提取方面有一定的局限性.相比之下,Transformer在全局信息提取方面表现出色,但计算复杂度高.为提高遥感图像场景分类性能,降低复杂度,设计了 LAG-MANet纯卷积网络.该网络既关注局部特征,又关注全局特征,并且考虑了多尺度特征.输入图像被预处理后,首先采用多分支扩张卷积模块(MBDConv)提取多尺度特征;然后依次进入网络的4个阶段,在每个阶段采用并行双域特征融合模块(P2DF)分支路提取局部、全局特征并进行融合;最后先经过全局平均池化、再经过全连接层输出分类标签.LAG-MANet在 WHU-RS19数据集、SIRI-WHU数据集及RSSCN7数据集上的分类准确率分别为97.76%、97.04%、97.18%.试验结果表明,在3个具有挑战性的公开遥感数据集上,LAG-MANet更具有优越性.
AbstractList P237; 遥感图像分类过程中,局部信息与全局信息至关重要.目前,遥感图像分类的方法主要包括卷积神经网络(CNN)及Transformer.CNN在局部信息提取方面具有优势,但在全局信息提取方面有一定的局限性.相比之下,Transformer在全局信息提取方面表现出色,但计算复杂度高.为提高遥感图像场景分类性能,降低复杂度,设计了 LAG-MANet纯卷积网络.该网络既关注局部特征,又关注全局特征,并且考虑了多尺度特征.输入图像被预处理后,首先采用多分支扩张卷积模块(MBDConv)提取多尺度特征;然后依次进入网络的4个阶段,在每个阶段采用并行双域特征融合模块(P2DF)分支路提取局部、全局特征并进行融合;最后先经过全局平均池化、再经过全连接层输出分类标签.LAG-MANet在 WHU-RS19数据集、SIRI-WHU数据集及RSSCN7数据集上的分类准确率分别为97.76%、97.04%、97.18%.试验结果表明,在3个具有挑战性的公开遥感数据集上,LAG-MANet更具有优越性.
Abstract_FL In the process of remote sensing image classification,both local and global information are crucial.At present,the methods for remote sensing image scene classification mainly include convolutional neural networks(CNN)and Transformers.While CNN has advantages in extracting local information,it has certain limitations in extracting global information.Compared with CNN,Transformer performs well in extracting global information,but has high computational complexity.To improve the performance of scene classification for remote sensing images while reducing complexity,a pure convolutional network called LAG-MANet is designed.This network focuses on both local and global features,taking into account multiple scales of features.Firstly,after inputting the pre-processed remote sensing images,multi-scale features are extracted by a multi-branch dilated convolution block(MBDConv).Then it enters four stages of the network in turn,and in each stage,local and global features are extracted and fused by different branches of the parallel dual-domain feature fusion block(P2DF).Finally,the classification labels are pooled by global average before being output by the fully connected layer.The classification accuracy of LAG-MANet is 97.76%on the WHU-RS19 dataset,97.04%on the SIRI-WHU dataset and 97.18%on the RSSCN7 dataset.The experimental results on three challenging public remote sensing datasets show that the LAG-MANet proposed in this paper is superior.
Author 郑薇
王威
王新
AuthorAffiliation 长沙理工大学计算机与通信工程学院,湖南长沙 410114
AuthorAffiliation_xml – name: 长沙理工大学计算机与通信工程学院,湖南长沙 410114
Author_FL WANG Xin
WANG Wei
ZHENG Wei
Author_FL_xml – sequence: 1
  fullname: WANG Wei
– sequence: 2
  fullname: ZHENG Wei
– sequence: 3
  fullname: WANG Xin
Author_xml – sequence: 1
  fullname: 王威
– sequence: 2
  fullname: 郑薇
– sequence: 3
  fullname: 王新
BookMark eNotjz9Lw0AYh2-oYK39CI6Oie97l7v3MoagUYg6qHO5NBe1SApG0VUsInRQR_-jILiJq4Lf5lL6LbTq8nu25-E3wxplv7SMzSH4iGFACz0_SuINnwMPJiMAKGiwJgKghzKU06xdVbsZgAwESRE2GYzvn93l1fjkpR48utsvd3rh7j7q6zd3fjZ6_xzdDNIo8VajNXtQvz65h-EsmyrMXmXb_2yxraXFzXjZS9eTlThKveq3Rjnl3JDQUmkwmmuNvAgps8IapSWCIVA878ogpFxbkMSlsYZbiarIUIkWm__zHpmyMOV2p9c_3C9_ip3uznE2eQgEiOIbytZS_w
ClassificationCodes P237
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2024.20230074
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitle_FL LAG-MANet model for remote sensing image scene classification
EndPage 1383
ExternalDocumentID chxb202407011
GroupedDBID -01
2B.
4A8
5VS
5XA
5XB
7X2
92E
92I
93N
ABJNI
ACGFS
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CW9
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PMFND
PSX
PYCSY
RIG
TCJ
TGP
U1G
U5K
ID FETCH-LOGICAL-s1001-7d7d2a7385680a828812f97be3ea68510a7062dc5497d8e05725aea2e516fb163
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords 遥感图像
CNN
LAG-MANet
场景分类
remote sensing image
scene classification
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1001-7d7d2a7385680a828812f97be3ea68510a7062dc5497d8e05725aea2e516fb163
PageCount 13
ParticipantIDs wanfang_journals_chxb202407011
PublicationCentury 2000
PublicationDate 2024-08-12
PublicationDateYYYYMMDD 2024-08-12
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-12
  day: 12
PublicationDecade 2020
PublicationTitle 测绘学报
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2024
Publisher 长沙理工大学计算机与通信工程学院,湖南长沙 410114
Publisher_xml – name: 长沙理工大学计算机与通信工程学院,湖南长沙 410114
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.407728
Snippet P237;...
SourceID wanfang
SourceType Aggregation Database
StartPage 1371
Title 面向遥感图像场景分类的LAG-MANet模型
URI https://d.wanfangdata.com.cn/periodical/chxb202407011
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG5ivHgRn8RX2IPtRSbO9GO6-9izmU3wERATyC3MM7m4AXcDmpsYRPCgHn2jIHgTrwr-m9mQf2FVz7g76oKPy9BUV_d8VbU9VdXbD0Iu8jJUaaZLL02F8ERWlp4Gr-CB78tkqbgyuVttsRIur4mr63J95pBtrVraGaYL2e7UfSX_Y1WggV1xl-w_WHbcKRCgDPaFJ1gYnn9lYxobahapZTSW1PjUBEjRAbWSxiHVgpqeq4poFGNBc6prSpdGFnmModZRtKY6pLGiUUCjCAvGQg_X7ZJ3w64UQ2S2mtrANY-pjtpxLdZG0IlrCM2NRjYL2EKHxAKkH7ZFFh07Xold6mBSYxAiiqGpgWZqSpsQayK_PV3BBM6_BpPk1ilG0qjncDGUEgXynYhAV05D8HZBrWohBfliJ6LCglHubbWqBI00QkCIPuoGKb1GH02HyokTtTo0TsEMfsgOiUHsqOxF1_mvIC-LADPHlqPApWgQCsq2J6mPPW5GjGq5hYDX98w0IUbA68t7fndfRijnv-xS99YCqg8fHOO8ib8er6LMtu6myANfbdzdfpgp5VYqXLvZjrAhvtXtCA4-uK0T6qTgkLCOI1q8fkCEkxMkJSDnoRlnlBiuSreAoBG_2RSHwK9Mg-32wvXLpL_ZCttWj5GjTb7VsfXgOU5mdrdOkDk7wH-Atm_f61zquHI9wTc4SfyD1--rp88O7n8Y7b2tXn6rHjypXn0ZPf9UPXq4__nr_ou98YgYfXxXvXl8iqz14tXustfcKuINHGqVq5wleIhTqP1EMw0hbmlUWvAiCSH_8BPlhyzPpDAq1wXkM0wmRcIKGYRlCunLaTLb3-4Xc6TDOQMaZ6UUicgTrpnJ8hx9JiitKIozZL4RfqP5agw2fjLa2T8xnCNHJoPoPJkd3tkpLkAUPEznnZ2_A1R2e3w
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E9%81%A5%E6%84%9F%E5%9B%BE%E5%83%8F%E5%9C%BA%E6%99%AF%E5%88%86%E7%B1%BB%E7%9A%84LAG-MANet%E6%A8%A1%E5%9E%8B&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E5%A8%81&rft.au=%E9%83%91%E8%96%87&rft.au=%E7%8E%8B%E6%96%B0&rft.date=2024-08-12&rft.pub=%E9%95%BF%E6%B2%99%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E9%80%9A%E4%BF%A1%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8D%97%E9%95%BF%E6%B2%99+410114&rft.issn=1001-1595&rft.volume=53&rft.issue=7&rft.spage=1371&rft.epage=1383&rft_id=info:doi/10.11947%2Fj.AGCS.2024.20230074&rft.externalDocID=chxb202407011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg